
Domain coupling with the DOVE scheme

Andrei V. Smirnov, Hanzhou Zhang

West Virginia University
Morgantown, WV 26506, U.S.A.

Abstract

Key words: CFD, domain decomposition, overlapping domains, unstructured meshes

1 Background

Numerical solutions of partial differential equations (PDE), are typically resource-
and time-consuming. The reason is that the discretization of PDEs usually
results in large linear systems of equations. To improve accuracy and in-
crease the speed of execution it is desirable to partition one large-scale
problem into many smaller subproblems, and solve it in a parallel man-
ner. The emergence of inexpensive Beowulf clusters and message passing
standards makes parallel computing even more attractive.

Domain decomposition is one of the most significant techniques to solve
PDEs on distributed memory multi-processor systems. It is based on par-
titioning the computational domain into several sub-domains. The original
problem can be then reformulated on sub-domains as a family of subprob-
lems of reduced size [1]. In PDEs leading to elliptic problems the applica-
tion of the technique can be especially challenging since sub-dividing the
domain leads to much slower global convergence rates [2]. The solution
of the original PDE is typically obtained by a preconditioned Krylov space
method, such as conjugate gradient method, generalized minimal residual
algorithms. The pre-conditioner is produced by using the solutions to sub-
problems.

Email addresses: asmirnov@wvu.edu (Andrei V. Smirnov,),
zhang hanzhou@hotmail.com (Hanzhou Zhang).

URL: mulphys.com (Andrei V. Smirnov,).

Preprint submitted to Elsevier Science 4 November 2003

Sub-domains may be overlapping or non-overlapping. The domain decom-
position methods for overlapping sub-domains are known as Schwarz meth-
ods. The earliest domain decomposition algorithm, Schwarz alternating method,
was introduced by H. A. Schwarz in 1869 [3]. Its sequential nature makes
it not ideal for parallel computations [4]. The additive Schwarz method pro-
posed by Dryja and Widlund [5], makes parallel computing of subproblems
possible (see also [6]). Another type of Schwarz method, the multiplicative
Schwarz method, is directly generalized from the original Schwarz alternat-
ing method [7].

Iterative sub-structuring methods [8–10], or Schur complement methods,
are methods for nonoverlapping domain decomposition where sub-domains
are separated from one another by interfaces. The main technique of these
methods is to reduce the differential problem to an interface problem, which
is defined in terms of the Steklov-Poincaré operator. In certain cases, sub-
structuring methods and Schwarz methods can be unified.

Domain decomposition typically involves a decomposition of the geometric
data structures, or decomposition of the mesh. The mesh decomposition is
usually subjected to some optimality criteria such as load balancing. It can
can be viewed as a graph partitioning problem. Unfortunately, this graph
partitioning is a NP-complete problem []. And there are almost no heuristics
that can solve this problem efficiently.

When domain decomposition is applied to an unstructured mesh the real-
ization of conformal mapping will often lead to highly irregular boundaries
for each sub-domain, which in turn will create extra errors in the gradient ap-
proximations. One possibility to avoid this is to construct all parallel domains
independently and then combine them together using inter-domain interpo-
lation. This approach is conceptually simple and can be used to construct
domains of fairly complex topologies and large sizes. It naturally provides
for smooth boundaries of each sub-domain. The price for this convenience
is the extra computational effort required to do variables interpolation at the
communication boundaries. Considering that this approach is similar to an
assembly procedure, in contrast to a dissection approach of a conventional
domain decomposition, we call it domain coupling rather than decomposi-
tion [11].

In this work a complete solution to a general domain coupling problem was
developed and used to solve a complex flow problem in a multi-processor
environment by means of message-passing interface. Section 2 gives the
outline of the method, with some of the results presented in Sec.3 and de-
tails on implementation provided in the Appendix. The perspectives of this
technique for complex problems of continuum mechanics involving moving
boundaries are outlined in Sec.4.

2

2 Method

We consider a solution of a continuum dynamics problem on M domains dis-
tributed over N computing nodes or processors. The computational model
of a physical problem is introduced by the following definitions.

(1) Element is a geometrical primitive. Elements can be of four different
ranks, which identify their dimensions: 0 (node), 1 (edge), 2 (face), 3
(cell). Nodes are points in space defined by their coordinates. All el-
ements of higher rank are defined by connecting them to lower-rank
elements, which are then called sub-elements. In some instances el-
ements may also be connected to the elements of the same rank
which are called neighbors or to the elements of higher rank (super-
elements). Thus, an edge is a line segment connecting two points, face
is a polygon defined as a connected set of nodes or edges, and cell
is a connected set of faces, edges or nodes forming a polyhedron. A
connectivity can be static or dynamic, i.e with a constant or a variable
number of connecting elements. Elements with dynamic connectivities
can represent continuum as well as discrete medium.

Elements of rank 2 and higher are characterized by their order, which
is equal to the number of the sub-elements of lower rank they are con-
nected to. This quantifies them as different order polygons or polyhe-
drons, such as triangles, cubes, tetrahedrons, femtohedrons, hexahe-
drons etc. In addition to this each element is characterized by its type,
which determines its relation to other elements and variables. For ex-
ample, a node can be internal, boundary, near-boundary etc.

There can be several types of boundary elements, depending on
their proximity to the boundary. The proximity determines if the ele-
ment is connected to the boundary directly (boundary-type) or indi-
rectly, by neighboring other boundary-elements (near-boundary type).
There can be several degrees of boundary proximity depending on the
rank, order and the type of boundary connectivity. Thus nodes located
at the boundary are of boundary type, and those not located at the
boundary but having a boundary super-element are of a near-boundary
type. Cells having only a face, an edge or a node, belonging to the
boundary, will all have different degrees of boundary proximity.

(2) Mesh is a single-connected set of elements, where every element can
be reached from any other element of the same rank through the neigh-
bor connectivity information.

(3) Boundary is a set of all boundary elements. The order of the boundary
is determined by the degree of boundary proximity of its elements. The
n-th order boundary of mesh M is denoted as ∂n M.

(4) Overlap of mesh A by mesh B is a set of boundary elements, ∂B, of a
mesh B and cells of mesh A, such that the elements ∂B themselves or

3

some of their sub-elements are inside the cells of mesh A. These cells
of A are called the (host-cells). In mathematical notation the overlap
is defined as O

�
A � B ��� A � ∂B. According to this definition the overlap

is not commutative, i.e. O
�
A � B ���� O

�
B � A � . The first argument of the

overlap O
�
A � B � , i.e. A, is the object considered to be overlapped and

the second, B, is overlapping. In what follows we shall also refer to
O
�
A � B � as domain overlap.

(5) Variable is defined by a set or real numbers representing a property,
such as pressure, temperature, velocity, stress, etc. A variable is de-
fined on any of the elements, such as nodes, edges, faces or cells, and
it inherits the type of element on which it is defined. Depending on the
type of the element and the type of it’s connectivity to other elements
(static, dynamic) the variables can represent a continuum or a discrete
property (density, particle size, etc.) A variable is also characterized by
its rank, which determines its dimensionality: 0 - scalar, 1 - vector, 2 -
matrix, . . . n - tensor of rank n.

(6) Boundary variable is a variable defined on boundary elements.
(7) Iteration is a procedure that updates some or all variables on the

mesh according to a specified algorithm. Iterations are characterized
by order, which is derived from the time accuracy of the discretizatin
scheme.

(8) Solver is a sequence of iterations that compute the state of all variables
at a specified physical time. A solver is supplied with the convergence
and termination criteria.

(9) Domain is represented by a mesh, a set of variables and a solver.
While mesh is a pure geometric construct, the variables and the solver
represent the model of a specific physical problem. Each domain can
only have one model, but each model can be represented by many do-
mains. That is, domains relate to models in a one-to-one relationship,
while models may have one-to-many relationship to domains. The set
of all domains forms the computational space.

(10) Processor is a computational unit capable of executing sequential algo-
rithms.

(11) Processor map is a distribution of domains among the processors. Do-
mains relate to processors by one-to-one relationship whereas proces-
sors can have a one-to-many relationship to domains, which is to say
that each domain can be computed by one processor only, but each
processor can compute several domains. Domains computed on the
same processor are called near domains and those computed on dif-
ferent processors - far domains.

The definitions above form the basis of a multi-model, multi-domain and
multi-processor computational environment. In this formalism the total prob-
lem space can be represented by several domains supplied with the same
or different physical models. The total set of domains is solved by a num-

4

Fig. 1. Domain decomposition on co-located grids.

Fig. 2. Domain coupling on overlapping unstructured grids. Boundary nodes are marked
with thick dots.

ber of processors, which does not have to be equal to the number of do-
mains. This formalism was implemented in a multi-physics simulation sys-
tem MulPhys 1 [12]. In what follows we shall describe the method of inter-
domain data exchange in single and multi-processor environments. This
method is based on the computational scheme for computing domain cou-
pling through domain overlaps (DOVE) [13].

In contrast to the conventional domain decomposition method (Sec.1, Fig.1),
where an initially constructed mesh for the computational space is split into
domains, in the domain coupling method each domain is constructed in-
dependently and then ”sewed” together with other domains in the areas of
domain-overlaps. Figure 2 shows an example of the domain coupling on
the boundaries of second order with four communication planes. As can be
seen in the figure the positions of the nodes in both grids do not necessarily
coincide in the region of overlap.

1 mulphys.com

5

Fig. 3. Distribution of 6 domains over 3 processors: � 1:A � , � 2:B,C,D � , � 3:E,F � .

During the iterations of the solver the variables in domain overlaps are ex-
changed in such a way as to provide a continuous solution across domain
boundaries, following the alternating Schwarz method [?]. The advantage
of this scheme is that it simplifies mesh generation since the conformity at
the domain boundaries is no longer required. In addition to that, because
the total mesh can be assembled by pieces, the method enables generation
of meshes of large sizes, which can extend beyond the memory capacity of
a single workstation.

The problem of domain coupling is reduced to constructing for each domain,
Di, overlaps with other domains: O

�
Di � D j � i �� j (Sec.2, Def.4), and using this

information to communicate the variables in the overlap areas between the
domains during each iteration. This problem can be considered in both sin-
gle and multi-processor modes. Generally, when M domains are distributed
over N processors with M � N (Fig.3) some of the domains will reside on the
same processor (near domains: � E � F � , Fig.3). If such domains also happen
to be overlapping, communicating the boundary overlap information will not
require message-passing routines and the coupling can be done more effi-
ciently than for the far-domains (Sec.2, Def.11)), like domains � A � B � , � A � C � ,

� A � D � , � A � E � in Fig.3.

To solve this general problem of domain coupling a special computational
procedure was developed. This procedure consists of initialization and com-
munication steps. The initialization step enables automatic identification of
overlapping regions and establishing their connectivities. The communica-
tion step uses this connectivity information and interpolation routines to ex-
change the variables in the areas of overlap. Two versions of this procedure

6

were implemented: for near and far domains (Sec.2, Def.11). While the first
version can be used for a multi-block type mesh constructed on a single pro-
cessor, the second version can be used in multi-processor computations on
distributed memory platforms such as Beowulf clusters.

2.1 Initialization

The initialization procedure is used to determine for each domain A the over-
lap O

�
A � B � with other domains as defined in Sec.2, Def.4. The overlap data

consists of the coordinates of boundary nodes of domain B contained inside
A and the pointers to the host-cells of domain A - one for each boundary
node. According to this scheme the initialization procedure is split into two
parts: identification of overlapping boundary points of the neighbor domain,
and establishing of point-cell connectivities. The procedure of identification
of boundary overlaps is the same for both near and far domains, and it is
based on the solution of a classical inclusion problem in a polyhedron [14].

In order to establish the connectivities the array of boundary coordinates of
each domain is sent to all other domains (Fig.4(a)), and the corresponding
arrays are received from other domains (App.A.3). Each received boundary
point is analyzed on whether it is inside of the current domain, and if so, the
cell of the current domain is found, which hosts the boundary point (Fig.4(b),
App.A.2). The coordinates of the boundary points of the overlapping domain
together with their indexes as used on that domain, as well as the pointers
to the host-cells of the overlapped domain are stored in a domain-overlap
list (Dove, App.A.1) for subsequent inter-domain communication.

For this scheme to work each processor should hold information on the
distribution of domains over the processors. This information is loaded as a
processor map (see Sec.2, Def.2) at the beginning of execution.

In the case of far-domains the initialization procedure can be communi-
cation intensive resulting in quadratic dependence of the number of sent
messages on the number of communicating nodes. To reduce this commu-
nication burst a special deferred communication scheme is implemented
(App.A.3).

2.2 Communication

The communication procedure (App.A.1) is called from the PDE solver when-
ever the values of the overlapped boundary variables need to be updated

7

(a) Connection (b) Boundary inclusion

(c) Cell interpolation (d) Communication

Fig. 4. DOVE scheme

with the corresponding interpolated values from the overlapped domain
(Fig.4(d)). Usually this is required once per solver iteration.

During the inter-domain communication the values of the dependent vari-
ables are interpolated to the boundary points of the overlapping domains
(Fig.4(c)) received during the initialization step (Sec.2.1). If the solver has
the order of accuracy higher than one the communication scheme may in-
volve both boundary and near-boundary elements. The order of proximity
of near boundary elements will be selected according to the order of the
discretization scheme used in the solver.

The interpolation is done inside each host-cell corresponding to each bound-
ary node (Fig.4(c)). The pointers to the host-cells are retrieved from the do-
main overlap information acquired during the initialization step (Sec.2.1). A
linear interpolation scheme is used for tetrahedral elements and a higher
order scheme would be appropriate for higher-order polygons. The inter-
polated values are sent to the overlapping domains together with the in-
dexes of the boundary nodes (Fig.4(d)). Correspondingly, the variables of
the neighbor domain interpolated to the overlapped boundary of the current

8

domain are received from the neighbor domains, and used as boundary
conditions on the overlapped boundary.

3 Results

The Dove scheme was tested in MulPhys environment for two cases: (1)
a finite-element Poisson solver, and (2) a control-volume flow solver. Both
solvers use tetrahedral meshes. All the variables were defined on the noes,
which corresponds to the vertex-centered discretization scheme.

3.1 Poisson solver

The Poisson solver implments a solution of the bounary value problem for
a scalar variable P

�
x � :

∆P
�
x � � f

�
x �

P
�
x ��� x � ∂0D

� f 0 � x � (1)

∂P
�
x �

∂n
� x � ∂1D � �

∇P � n � x � ∂1D
� f 1 � x � (2)

where
��� � � � denotes a scalar product operation on two vectors, x repre-

sents a vector of coordinates x � � xi � � i � 1 : 3, n is the normal vector to the
boundary ∂iD of the domain D with i � 0 representing Dirichlet and i � 1 -
Neuman boundary. Functions f , f i are the source-function inside the do-
main, f , and the boundary sources, f i (i=0,1), respectively. The problem is
discretized by a finite-element method (FEM) on a tetrahedral mesh.

First we considered two cases of heat transfer in a cubic box, which cor-
responds to the solution of a simple Laplace equation. The box was split
into several domains, which were executed on different processors with the
DOVE coupling scheme responsible for inter-domain communications. In
the first case two opposite walls of the box were set at a constant temper-
atures with low and high values, and the other walls were made adiabatic.
This situation should produce a temperature profile changing linearly inside
the box from the cold to the hot wall. In the second case the side walls
were set to the low temperature as well, which should produce a non-linear
temperature decay from the hot to the cold wall.

Figure 5 presents the results of the first case for a single-, two-, and four-
processor runs. As can be seen all curves agree well to the linear profile.

9

In the second case, (Fig.6) the continuity of the solution across the domain
boundaries is observed as well.

In another test case we performed computations of a Poisson equation
with a non-zero source term and constant value boundary conditions. The
source was put inside the right of the cube. The cube was split into tree
domains, which were coupled with the DOVE scheme and executed on
different processors. Figure 7 shows the contour plots and cross-sectional
temperature profiles for this case.

As can be seen in the figures there is an almost perfect coincidence in
computed values for a single and multi-processor cases.

3.2 Flow solver

The flow solver used in this study [15] is based on the coupled solution
of equations of mass and momentum conservation, augmented with the
thermodynamic relation of state 2

ρ̇ � �
ρui ��� i � 0 (3)

u̇i � u jui � j � νui � j j � ρ � 1 p � i (4)
p � ρRT (5)

where ρ � ui � p � ν are density, velocity, pressure and kinematic viscosity. For
simplicity we consider the ideal-gas law as an equation of state with R as
the gas constant, and T as the absolute temperature.

A stable discretization of the equation system (3)-(5) in a control-volume
formulation is obtained by using the mass of the control volume, m as an
independent variable: m � ρcv, where cv is the control volume [15]. The us-
age of mass as an independent variable complicates the domain-coupling
scheme since the control volumes of the sending and the recipient domains
can be different. In this case the communicated variable should be the den-
sity: ρ � m � cv. Otherwise the mass on the receiving end should be derived
from the pressure and the control volume using the equation of state (5).
The last approach was adopted in our procedure.

Figure 8 shows the velocity vector field in a simple composite domain con-
sisting of two straight cylindrical pipes. A fluid flow was simulated in this
domain by specifying a pressure drop between the inlet and the outlet of

2 We use notation: ȧ � da � dt, a� i � ∂a � ∂xi

10

-1

-0.5

 0

 0.5

 1

-20 -12.2 -10.2 -2.4 2.4 10.2 12.2 20

(1)
(2)
(3)
(4)
(5)
(6)
(7)

Fig. 5. Temperature decay in a cubic domain with adiabatic walls. (1):single processor run;
(2)-(3):two-processor run; (4)-(7):four-processor run; Vertical lines: boundary places.

-10

-5

 0

 5

 10
-8 -4.6 -3.4 -0.6 0.6 3.4 4.6 8

(a) Contours of constant temperature

-1

-0.5

 0

 0.5

 1

-8 -4.6 -3.4 -0.6 0.6 3.4 4.6 8

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)

(b) Temperature profile at different cross-
sections

Fig. 6. Temperature decay in a cubic domain with constant temperature walls. (1)-(4):sin-
gle processor run; (5)-(8):two-processor run; (9)-(12):four-processor run; Vertical lines:
boundary places.

11

-4

-2

 0

 2

 4

-16.75 -12 -9.75 3.75 6 16.75

(a) Contours of constant temperature

-1

-0.5

 0

 0.5

 1

-16.75 -12 -9.75 3.75 6 16.75

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(b) Temperature profile at different cross-
sections

Fig. 7. Temperature distribution with a source and constant-temperature walls. (1)-(4):sin-
gle processor run; (5)-(8):three-processor run; Vertical lines: boundary places.

the straight pipe. In the present coupling scheme the degree of overlap-
ping of the domains can be set arbitrarily, although from the consideration
of memory utilization a smallest possible overlap consistent with the dis-
cretization scheme is preferred. A three-cell overlap was used in this case.
The figure is centered on the region of overlap with two boundaries of the
overlapping domains visible on both sides from the center. As can be seen
the vector field shows a continuity across the domains.

The advantage of this scheme is especially evident in complex geometries
with arbitrary connectivities between the domains. The next case illustrates
this point. An example in Fig. 9 shows a more complex composite domain,
consisting of two overlapping domains: a straight and a curved pipe. Do-
main coupling with the DOVE scheme enabled to simulate the continuous
flow passage through the composite domain with deflection of some of the
flow from the straight pipe to the curved one (Fig. 10). Since any overlap-

12

Fig. 8. Flow through two coupled straight pipes.

ping of two domains is detected automatically, topologically complex cases
can be handled as easily as simple ones.

The cases with more than two domains are handled in an analogous man-
ner, as long as there are no more than two domains overlapping in the
same region of space. Figure 11 show an example of a more complex do-
main where an extra square box was added on the top of the pipe with the
flow outlets at two opposite sides of the box. Coupling of multiple domains
may create problems if more than two domains overlap in the same region
of space. This situation can still be handled by designing a ”shadowing”
strategy, whereby a domain that was overshadowed by another domain is
rendered inactive in the region of overlap. Such a strategy is being currently
worked out.

4 Conclusions and Future Work

An inter-domain coupling scheme is proposed which enables automatic de-
tection of domain overlaps and and setup of inter-domain communication
for overlapping 3D domains of arbitrary geometry. The scheme was tested
on the cases of a finite-element Poisson solver and a control-volume flow
solver.

One of the advantages of the proposed scheme is that it can be used to
construct large and complex domains without the need to store all the grid
on a single computing node at the same time. Thus a fairly large computa-
tional domains, which may not fit into a memory of a single processor can
still be constructed by patching together smaller sub-domains.

As was noted in Sec.3, overlapping of more than two domains in the same
region of space should be handled in a special way to avoid ambiguity of in
the solution. This can be done by introducing the overlap-order sequence,

13

(a) Boundary (b) Mesh

Fig. 9. Complex domain coupling.

Fig. 10. Flow through the coupled domains.
A simulation is available at www.mulphys.com/dove

so that each domain will have only one overlapping and one overlapped
domain.

The DOVE scheme can be easily extended to handle dynamic overlapping
regions, when the domains may change shape or move with respect to each
other. In this case the Dove initialization functions should be called from
within the main solver at certain times to update the changing geometry of
the overlap region and re-generate the connectivity arrays. In this case the
initialization step (Sec.2.1) will become a part of the solver iterator. Thus, the
realization of dynamic overlaps will be rather straightforward. It will enable
modeling of many dynamic events that are usually considered tough for

14

Fig. 11. Flow through three coupled domains.

conventional CFD: mitosis (cell division), munitions released from bomb-
bays, etc.

Because of the non-conformal nature of the decomposition scheme and
the consequent need for interpolation the order of accuracy of the solution
in the boundary plane may degrade. This can be somewhat offset by using
higher order boundaries represented by near-boundary elements of vari-
ous orders of proximity. This will still not be as exact as a solution based on
conformal mapping, since it will not eliminate the diffusive effects of inter-
polation. Nevertheless the flexibility of the scheme to handle complex ge-
ometries, including moving domain boundaries and whole domains, along
with its practicality in storing large data sets can be an attractive feature for
some tough engineering problems.

A Algorithms

The algorithms of setting and communicating domain overlaps below are
given for the case of tetrahedral meshes and node-type variables of rank 0.

15

A.1 Exchanging domain overlap data

The boundary overlap data are stored in the list of domain overlaps, which
is created during the initialization of domain overlaps (Sec.2.1). A member
of this list is represented by the Dove structure below:

struct Dove // Domain overlap
{ int

Nnodes, // number of overlapping nodes
// of the neighbor domain

I[]; // array of boundary node-indexes
// of the neighbor domain

float X[]; // array of node-coordinates
// of the neighbor domain

Cell *cell[]; // list of pointers to the cells
// of this domain containing points
// with the coordinates X

Domain *neighbor; // neighbor domain
Dove *next; // next overlap structure

};

As can be seen, it is connected in the linked list through next pointers. The
Node and Cell structures can consist of this minimum set of data:

struct Node
{

int type;
float

x[DIM],//Coordinates
*var; //Variable storage

};
struct Cell
{

unsigned int index; //used in file IO
Node *vert[Nverts];
Cell *neib[Nfaces]; //neighbors

};

Here and in all the listings below the DIM constant is equal to 3. We also
consider the case of node-based variables, corresponding to the vertex-
centered discretization scheme.

The listing below shows the data exchange in the domain overlap region
during each iteration of the solver for the far domains:

16

// Sending domain overlap:
for (int i=0; i<ndomains; i++)
{ if (proc==domain[i].proc)

domain[i].sendDove();
}
//Receiving domain overlap:
for (int i=0; i<ndomains; i++)
{ if (proc==domain[i].proc)

for (int ivar=0; ivar<maxvar; ivar++)
domain[i].receiveDove();

}

The simplified versions of send/receive functions are implemented like this:

void Domain::sendDove()
{ for // Send overlap variables

(Dove *dove=dove_head;
dove != NULL;
dove = dove->next

)
{ // Variable buffer:

float *varbuf = new float[dove->Nnodes*Nvar];
for(int inode=0; inode < dove->Nnodes; inode++)
{ getVar // Interpolate variables inside the cell

(dove->cell[inode], // host-cell
dove->X+DIM*inode, // interpolation point
Nvar, // number of variables
varbuf+Nvar*inode // returned variables

);
}
sendInt // Send variables
(dove->neighbor, // recipient domain

Nnodes, // number of nodes in the overlap
dove->I // indexes of boundary nodes

);
sendFloat // Send variables
(dove->neighbor, // recipient domain

Nnodes*Nvar, // number of variables to send
varbuf // send buffer

);
}

}

In this case variables iproc, dove head, and Nvar are external to this
function and are public variables of the domain.

17

Function getVar(Cell *C, float X[], int n, float V[]) inter-
polates n variables from cell vertexes of cell C to the cell-internal point with
coordinates X[0], X[1], X[2], and stores the result at V[0..Nvar-1].
The variables are considered to have rank=0 (Sec.2, Def.5).

Functions sendInt, sendFloat send arrays of integer and floating-point
numbers to the overlapping domain. The host-processor of the recipient
domain is determined from the processor map (Sec.2, Def.procmap). The
send- functions implement the inter-processor data exchange, using a stan-
dard message passing interface, such as MPI.

Receiving of the domain overlap data can be by the following procedure:

void Domain::receiveDove()
{ //Receive overlap variables from connected

// domains on other processors
for
(Dove *dove=dove_head;

dove != NULL;
dove = dove->next

)
{ int Nnodes, Nvar,

*I; // array of indexes to the boundary nodes
float *varbuf; // receive-buffer
receiveInt(&Nnodes, &I);
receiveFloat(&Nvar, &varbuf);
for (int inode=0; inode<Nnodes; inode++)
{ for(int ivar=0; ivar<Nvar; ivar++)

nodes[I[inode]].var[ivar]
= varbuf[inode*Nvar+ivar];

}
}

}

Where nodes[] is an array of mesh-nodes of the current domain.

A.2 Cell search

The algorithm below solves a problem of locating a cell containing a point
on a general plyhedral mesh. The algorithm uses the function hostcell
that solves the inclusion problem on a polyhedron: given initial cell and a
point it points to the initial cell or it’s immediate neighbor-cell, which either
contains the point or lies closer to the point than the initial cell. The function
returns NULL if the point lies outside of the domain boundary.

18

Fig. A.1. Host cell search. The search of the host-cell for point B goes through the interme-
diate cells � a � b � c � d � e � f � in a linear manner.

Cell *findcell
(float *x, // x[DIM] coordinates of a point

Cell *cell // initial cell
)
{ //Locates cell containing point x

int counter=0;
Cell *next,*prev;
next=prev=cell;
while ((next=hostcell(x,cell))!=NULL)
{ if (next==cell) return cell;

if (next==prev) return NULL;
prev=cell;
cell=next;

}
return NULL;

}

The function findcell has two arguments: the coordinates of the point
and the pointer to the initial cell, where the search will start. Usually, there
exists a good guess of the initial cell for the search to start, like the previous
host-cell of the particle in particle tracking problems, or the host-cell of the
neighbor boundary node, in mesh-overlap problem. The algorithm will go in
a linear path from the original cell to the new cell as illustrated in Fig.A.1.
This makes the execution time of the algorithm linear in the number of cells
of the mesh. The time of an exhaustive looping through all the mesh cells
would be a cubic function of the mesh size.

19

A.3 Deferred boundary data exchange

Below is the algorithm for inter-domain boundary data exchange, which
forms the outer shell of the procedure of setting up the domain overlap
information. This procedure is used at the initialization stage of the Dove
scheme (Sec.2.1). In this scheme instead of sending data to all processors
at once, each processor sends data to a processor located n processors
ahead in processor number range. Then it receives data sent by a proces-
sor located n processors behind. After that the whole process is repeated
with a different n, untill n spans all the processor number range.

for (int n=1; n<nproc; n++)
{ int to = (proc+n) % nproc;

for (int idom=0; idom < ndom; idom++)
{ if (proc == domain[idom].proc)

for (int j=1; j<ndom; j++)
{ int jdom = (idom+j) % ndom;

if (to == domain[jdom].proc)
domain[idom].sendBoundary (jdom);

}
}
int from = (proc+nproc-n) % nproc;
for (int idom=0; idom<ndom; idom++)
{ if (proc == domain[idom].proc)

for (int j=1; j<ndom; j++)
{ int jdom = (idom+j) % ndomains;

if (from == domain[jdom].proc)
domain[idom].receiveBoundary (jdom);

}
}

}

In this listing iproc is the current processor number, variables to and from
identify the number of processors to send/receive data, n%m is a division-
by-modulus operation of number n by number m, idom is the number of the
domain residing on the current processor, and jdom is the number of the
domain to communicate the boundary to/from. Functions sendBoundary
and receiveBoundary implement the communication of boundary nodes
and identification of domain overlaps as described in Sec.2.1, and App.A.2.

Figure A.2 illustrates this communication scheme for the case of n=2. The
division by modulus used in the algorithm makes the processors arranged
in a connected loop, which facilitates the processor skip operation.

20

Fig. A.2. Interprocessor boundary exchange: Each processor skips over n processors when
communicating data, where n changes from 1 to the maximum processor number (n=2
above).

This algorithm guarantees that the communication overhead is linearly de-
pendent on the total number of communicating processors, as opposed to
the quadratic dependence when the loop over n is not implemented.

The boundary information received by each processor is used to initialize
the boundary overlap list (App.A.1).

References

[1] Alfio Quanteroni and Alberto Valli. Domain Decomposition Method for Partial
Differential Equations. Oxford Science Publications, 1999.

[2] Dihn, Q.V., Glowinski, R. and Periaux, J. Solving elliptic problems by domain
decomposition methods with applications. In G. Birkhoff and A. Schoenstadt,
editor, Elliptic Problem Solvers II. Academic Press, New York, 1984.

[3] H.A. Schwarz. Űber einige abbildungsdufgaben. J. Reine Angew. Math.,
70:105–120, 1869.

[4] X. Zhang. Studies in Domain Decomposition: Multilevel Methods and the
Biharmonic Dirichlet Problem. PhD thesis, Courant Institute, New York
University, 1991.

[5] O.B. Widlund M. Dryja. An additive variant of the schwarz alternating method
for the case of many subregions. Technical Report 339, Department of
Computer Science, Courant Institute, New York University, 1987.

[6] A.M. Mataokin, S.V. Nepomnyaschikh. A Schwarz alternating method in a
subspace. Soviet Mathematics, 29 (10):78–84, 1985.

[7] P.L. Lions. On the schwarz alternating method i. In First International
Symposium on Domain Decomposition Methods for Partial Differential
Equations, pages 47–70. SIAM, 1988.

21

[8] J.H. Bramble, J.E. Pasciak, A.H. Schatz. The construction of preconditioners
for elliptic problems by substructuring, I. Math. Comp., 47:103–134, 1986.

[9] J.H. Bramble, J.E. Pasciak, A.H. Schatz. The construction of preconditioners
for elliptic problems by substructuring, IV. Math. Comp., 53:1–24, 1989.

[10] P.E. Bjørstad, O.B. Widlund. Iterative methods for the solution of elliptic
problems on regions partitioned into substructures. SIAM J. Numer. Anal.,
23:1093–1120, 1986.

[11] A.V. Smirnov. Domain coupling with the DOVE scheme. In Parallel CFD 2003,
Moscow, Russia, 2003. Russian Academy of Sciences.

[12] A.V. Smirnov. Multi-physics modeling environment for continuum and discrete
dynamics. In IASTED International Conference: Modelling and Simulation,
number 380-174, Palm Springs, CA, 2003.

[13] A.V. Smirnov, I. Yavuz, C. Ersahin, and I. Celik. Parallel computations of
turbulent wakes. In Parallel CFD 2003, Moscow, Russia, 2003. Russian
Academy of Sciences.

[14] Joseph O’Rourke. Computational Geometry in C. Cambridge Univ. Press,
1998.

[15] A.V. Smirnov, W. Huebsh, and C. Menchini. A flow-solver with flexible
boundaries. In IASTED International Conference, number 380-252 in
Modelling and Simulation, Palm Springs, CA, 2003.

22

