
MULTI-PHYSICS MODELLING ENVIRONMENT FOR
CONTINUUM AND DISCRETE DYNAMICS

A. V. Smirnov
Mechanical & Aerospace Engineering Department

West Virginia University
Morgantown, USA

email: asmirnov@wvu.edu

Abstract

A model-development environment for simula-
tion of discrete and continuum dynamics in com-
plex 3D geometries is described. This environ-
ment is based on 3D libraries for manipulation of
geometrical primitives, object-oriented multi-domain
modeling paradigm, continuum solvers on unstruc-
tured meshes, discrete particle solvers, and a tool-
assisted grid generation technique. The numerical
approach is based on combined control-volume and
finite-element methods of continuum mechanics and
Lagrangian particle dynamics method.

Several prototype example cases of complex con-
tinuum mechanical systems are considered, such as
flow in bifurcating channels, including particle trans-
port and deposition, flow interactions with flexible
membraines and rigid structures, and a simplified
model of molecular dynamics represented by a sys-
tem of particles and bonds.

KEY WORDS
Multi-paradigm Simulation; Physically-based Mod-
elling; Continuous & Discrete Methodology; 3-
Dimensional Modelling

1 Background

In the past few years a clear trend has emerged to-
ward the integration of different modelling paradigms

of continuum dynamics, such as fluid dynamics and
structural analysis. On the one hand, we witness a
further expansion of discrete dynamics modelling in
such areas as molecular dynamics, particulate and
aerosol transport, etc. The complexity of modelling
a mechanical system grows exponentially with the
number of different processes involved. A computa-
tional approach that simultaneously accounts for all
the phenomena related to an event is called multi-
physics [1, 2]. This term is becoming increasingly
popular and is used to refer to modelling of more
than one phenomenon in both engineering and nat-
ural systems [3]. Multiphysics simulations become
especially popular with a growing usage of parallel
computer platforms where the modularity of the ap-
proach can be fully exploited [4, 5, 6].

Examples of multiphysics systems include com-
posite materials [7], complex fluid dynamics [8], with
phase transitions [9], electromagnetic and acoustical
effects [6, 5], general multi-component systems [10]
etc. The number of publications that refer to multi-
physics or multi-modelling is growing rapidly, and the
number of studies that deal with multiphysics mod-
elling without directly mentioning the term is already
overwhelming. Most of these studies are concerned
with continuum systems, where different phenom-
ena are modeled by means of partial differential
equations (PDE) discretized in the manner appropri-
ate to each particular model: finite element, control-
volume, or finite-difference. There are usually two
different classes of problems: one with different phe-

1

nomena sharing the same region of space, and an-
other, where the phenomena occur in different re-
gions of space, and their interaction takes place at
the boundaries.

The approach to solve the first set of problems is
based on designing flexible discretization schemes
that would enable the construction of composite con-
tinuum solvers [11, 6, 10]. The second class of prob-
lems is solved by decomposing the space into do-
mains with different physics and arranging for cou-
pling between the domains. The corresponding
techniques are usually referred to as domain decom-
position [12, 13, 14], or domain partitioning [4].

However, there is a class of problems where the
regions of space governed by different physics may
change in time or where the distinction between the
continuum and discrete dynamics becomes diffuse.
Examples of such problems include: fluid structure
interaction, liquid interface tracking, fracture and dis-
integration of solids, interaction of discrete and con-
tinuum phases, etc. It is common to use application-
specific solution methods for such systems. Solvers
and discretization schemes used for one problem
are usually not suitable for other problems. However,
a unifying approach in all the discretization schemes
is to define a given set of variables on a discrete set
of elements (cells or nodes of a computational grid,
or points in space, etc.), and then to implement the
solution methods in algorithms that manipulate the
discretized variables.

In this study we use the idea of a generalized dis-
cretization element as a primitive geometrical object
of a variable dimension and connectivity, and gener-
alized variables as properties of the elements. With
these generalizations an object-oriented approach
was developed, which provides solutions to a broad
class of mechanical systems on the basis of progres-
sive associations and inter-dependencies of geo-
metrical primitives (elements). The elements are en-
veloped in classes and supplied with functions that
enable their spatial manipulations and dynamic inter-
connections. The elements can be arranged into
domains, defining the geometry, and functions can
be combined into solvers, providing physical con-
tent. Together domains and solvers constitute a set
of models.

This multi-domain multi-model framework makes
it possible to model in a unified and general manner
the interactions between various physical objects,
such as material points (particles, bubbles, etc.),
segments (struts, tethers, etc.), surfaces (mem-
branes, shells, etc.) and continuum media (solid
bodies, flow/force fields, see Sec.4).

As pointed out above, the number of integrated
environments for multiphysics modelling is con-
stantly growing. However, to the knowledge of the
author, the method proposed and implemented in
this study offers two new features: flexible discretiza-
tion strategy based on generalized elements, and a
unified modelling framework. This framework com-
bines the standard pre-processor, model-execution
and post-processor steps into a single continuous
simulation process. The approach is general enough
to include the mesh generation procedure itself as
just another model in the system.

2 Method

The top-down approach of the method starts with
a concept of a model. Each model consists of a
domain and a solver (Fig.1). Domains populate a
physical 4D space-time and have one-to-many re-
lationships to each other in form of geometrical in-
tersections in the common regions of space-time.
Each domain consists of a connected set of geomet-
rical primitives or elements and variables defined on
these primitives. The domain is also supplied with
a collection of functions to manipulate the variables
and the primitives. These functions are executed in
a certain sequence specific for each domain, which
constitutes a solver. Domains have one-to-one rela-
tionship to solvers, whereby there can be only one
solver for each domain. Solvers may have one to
many relationships to domains, where one solver
can operate in several domains. Solvers can also
have inclusive relationships to each other, where
each solver can include one or several other solvers.

The bottom-up approach to the modelling
paradigm starts with the concept of an element
or a geometrical primitive. One property of an
element is its spatial dimension, which can span

2

Figure 1: Modelling paradigm

the range between 0 and 3. Another property is
its type, like point, node, edge, face, and cell. In
the current implementation there are two types of
elements of dimension zero (points and nodes)
and one type of element for each dimension higher
than zero. Among the latter the faces are currently
represented by triangles, and cells are represented
by tetrahedrons. The elements can be connected to
each other and to other elements. The connectiv-
ities between the elements are determined by their
types and geometrical constraints. For example,
points can have one-to-many connectivity to each
other, one-to-one connectivity to the cells and faces
(inclusion) and generally, no connectivity to the
edges, etc. The possible connectivities are given in
Table 1.

Table 1: Connectivity relationships between the elements
points nodes edges faces cells

points M - - 1* 1
nodes - - M M M
edges - 2 - M M
faces M 3 3 3* 2
cells M 4 4 4 4

* - only for domain-boundary elements

The connectivity matrix is asymmetric, which
points to the asymmetry of element inclusion rela-
tionship. The one-to-many relationship (M) is usually
represented by dynamically linked lists. It can also
be seen from the table that the boundary elements

Figure 2: Dynamic connectivity of elements.

of the domain may possess some extra connectivity
constraints.

All elements are stored as linked lists, looped back
on themselves (rings), and their connectivities are
stored in the same type of lists (Fig.2). This pro-
vides high efficiency and flexibility in element cre-
ation/ destruction operations, as well as in modelling
the element interactions. There are several functions
defined inside the element-class, which realize op-
erations on elements, such as creation/destruction,
motion, connection, etc. These functions combine
into an element library that is used to build domain
specific solvers and models described below.

A 3D mesh is a connected set of elements, such
as cells, faces, edges and nodes, excluding points.
A mesh does not have to include elements of all
types. So, a simple 3D mesh for the finite-element
method can consist of connected set of cells and
nodes only. Similarly, a 2D mesh can consist of
faces, edges and nodes, or of faces and nodes only.

A variable is a property of an element which is
changing in space-time, such as coordinates, veloc-
ities, mass, etc. Each element can contain a set of
discrete or continuous variables of a general tensor
type with a rank of 0 (scalar), 1 (vector), 2 (matrix),
etc. For example, a finite-element incompressible
Navier-Stokes solver may be defined on nodal el-
ements with one variable of type scalar (pressure)
and one of type vector (velocity). At the same time in
a control-volume type formulation the pressure vari-
able may be defined on the cells and velocity vari-
able can be defined on the faces, providing a variant

3

of a staggered-grid formulation [15]. A node-cell ar-
rangement with pressure defined at the nodes and
velocity at cell-centers, with subsequent interpola-
tion to the faces would represent still another pos-
sibility. This approach provides a great flexibility in
the choice of numerical discretization schemes.

Domain is a connected set of elements and vari-
ables. A solver is a domain-specific sequence of
operations on variables and elements. Element op-
erations were introduced earlier, and variable oper-
ations include interpolation, differentiation, comput-
ing fluxes, etc. It is important to point out that the
inclusion of element-operations into the solver ex-
tends the notion of the solver from a simple variable
manipulator to domain manipulator. This not only
allows domains with changing geometries, but also
enables other complex modelling, like domain con-
struction (grid-generators, tissue-growth, etc), and
destructors (dissolution, fracture, collapse, etc).

A solver is based on a known method. For ex-
ample, in the current implementation the solution
of a Poisson equation on 3D tetrahedral meshes is
realized using the finite-element method [16], and
the solution of aerosol transport in bifurcating air-
ways is realized using the control-volume method
for unstructured meshes [15] together with the La-
grangian particle dynamics method [17]. Com-
posite modelling can be accomplished by combin-
ing several models. For example, the current im-
plementation of the incompressible Navier-Stokes
solver is combined from the control-volume solver for
convection-diffusion process and the finite-element
Poisson solver. Such a solver has the advantage of
using each method in its most appropriate context: a
flux-conservative scheme for transport process, and
a rigorous FEM scheme for the elliptic problem.

The creation of a model is divided into two steps:
domain setup and solver setup (Fig.3). Domain
setup is in turn split between: geometry definition
and variables definition. Solver setup consists of two
procedures: initializer and iterator. Each procedure
is implemented in a high-level language (C++), and
uses a set of library functions for manipulating geo-
metrical primitives (elements) and performing oper-
ations on variables. The dependency lines in Fig.3
indicate that the variables are conditioned on the ex-

Figure 3: Model definition

istence of elements and the iterator is conditioned on
the initializer. During the program run initializers for
all the models are called first, and then iterators of
each model are executed one after another, or con-
currently when in multiprocessor mode.

The advantage of this scheme is that it provides
both composite and distributed modelling environ-
ments, in which it is possible to combine different
models into one, and also to assign different models
to different regions of space. This feature can be of a
great benefit in simulating complex multi-component
systems, where different parts of the system are
characterized by different physical processes.

The multi-domain feature of the system makes it
easily parallelizable, with each domain or a group
of domains assigned for execution by a separate
process. A special algorithm of domain coupling
(DOVE) [18] enables automatic setup of communica-
tion interfaces in the overlapping regions of domains.
In contrast to similar approaches [4, 12, 13, 14], the
DOVE technique can be used to track the connectiv-
ities of domains with changing geometries and mov-
ing with respect to each other.

Another feature of the modelling environment is
the possibility of assigning scenarios for certain ob-
jects composed of groups of elements. These sce-
narios prescribe the sequence of positions for these
objects and some features of interactivity with other
elements. This way it is possible to simulate complex
time dependent events where the behavior of certain
elements of the system is pre-determined (Fig.6).

The integrated modelling-environment developed

4

Figure 4: Connectivities in a multi-element framework.

in this work enables one to implement a unique visu-
alization strategy, where there are no pre- and post-
processor stages for data setup and visualization.
Instead there is a single mode of monitoring and
control of the state of the simulation via a graphic
user interface (GUI). In this mode the information on
geometry and variables for each model is displayed
continuously, during all stages of model initialization
and execution. Monitoring of three-dimensional do-
main data is done through the calls to 3D visualiza-
tion routines built on top of the OpenGL graphics li-
brary (www.opengl.org).

3 Implementation

The unique feature of this approach not found in al-
ternative multiphysics approaches [8, 4, 11, 9, 6] is
the flexibility of associating variables of the problem
with different elements of geometry, such as ver-
texes, edges, faces and cells (Fig.4). This provides
an easy way of implementing control-volume (CV),
finite-element (FE), and mixed control-volume/ finite-
element methods [15, 16].

However, this flexibility comes at a cost of ad-
ditional memory requirements needed to store the
dynamic connectivities, when such are used in the
model. The overall performance of the simulation will
depend greatly on the implementation of the solver.
The details of this implementation are not important
for the purpose of this study as long as the solver
uses the element class library. In this way any solver

can take advantage of the dynamic interactivity be-
tween the elements, which makes it more versatile.

In our work we used explicit time marching
schemes for the unsteady problems. A Jacobi or
Gauss-Seidel scheme is employed in the Poisson FE
solver. Implementation of accelerated solvers (CG,
MG, etc.) is possible within this framework, and is
planned as a future work.

3.1 Continuum solvers

There are two types of continuum solvers currently
implemented in this framework: finite element Pois-
son solver, and a control-volume flow solver.

3.2 Finite element solver

The finite element solver currently implemented
solves the boundary-value problem for the Poisson
equation:

∆P
�
x ��� f

�
x �

P
�
x ��� x � ∂0D � f 0 � x � (1)

∂P
�
x �

∂n
� x � ∂1D � �

∇P � n � x � ∂1D � f 1 � x � (2)

where
�
	 � 	 � denotes a scalar product operation on

two vectors, x represents a vector of coordinates x ��
xi �� i � 1 : 3, n is the normal vector to the boundary

∂iD of the domain D with i � 0 representing Dirichlet
and i � 1 - Neuman boundary.

After the finite element discretization is applied on
tetrahedral meshes, the following algebraic system
results:

N

∑
j � 1

c1
i j p j ��� N

∑
j � 1

c0
i j f j

where the coefficients c0 � 1
i j are assembled in a loop

over all the tetrahedral elements:

c0
i j �

Ne

∑
k � 1

�
Ek

φiφ jd
3x � Ne

∑
k � 1

c0 � k
αiβ j

(3)

5

c1
i j �

Ne

∑
k � 1

�
Ek

∇φi∇φ jd
3x � Ne

∑
k � 1

c1 � k
αiβ j

(4)

where Ne is the number of grid-elements or cells, and
the subindexes α β are now indexes of element ver-
texes corresponding to grid nodes i j inside each
elment. The coefficients c � � kαβ are obtained by per-
forming integration over each element k. For tetrahe-
dral elements they can be computed in the following
manner, that we provide here without derivation:

c0 � k
αα � 1

10
Vk (5)

c0 � k
αβ � 1

20
Vk (6)

c1 � k
αβ �

�
aα � aβ �

9Vk
(7)

where Vk is a volume of the element k and aα is the
surface-normal area vector of the face opposite to
node α.

After the coefficients of discretization are now well
defined by relations (3) - (4), the solver applies
an appropriate iterative procedure to solve the ma-
trix system 3. It should be noted that in the case
of a moving boundary problem the coefficients c0 � 1

i j
should be recomputed at every iteration of the solver.

3.3 Control-volume solvers

Let’s consider as an example the implementation
of a control-volume solver for a compressible flow
model. Brief examples related to other models are
provided in Section 4. The governing equations are
represented by mass and momentum conservation:

ρ̇ � �
ρUi � � i � 0 (8)

U̇i
�

U jUi � j � νUi � j j � ρ � 1P� i (9)

where ρ Ui P ν are density, velocity, pressure and
kinematic viscosity. System (8), (9) is not closed.
A rigorous approach to close it would be to use a
thermodynamic relation between pressure and den-
sity, such as an ideal gas law: P � ρRT . However,

this may introduce high-frequency acoustic modes
into the problem, which in turn can slowdown the so-
lution procedure considerably. To avoid this, usually
a Poisson equation for pressure is formulated and
solved. Currently both methods are implemented in
the system.

In contrast to the FE method used for the solution
of the Poisson equation, in CV flow solvers the lo-
cation of the variables does not have to be vertex-
based. On the contrary, a cell-centered scheme
is often preferred [15]. Since the formalism de-
scribed here allows an arbitrary association of vari-
ables to elements it enabled the implementation of
various versions of CV method. A consistent ap-
proach is based on cell-centered pressure and face-
centered velocity location, which corresponds to the
computationally stable staggered grid arrangement
[19]. However, on tetrahedral grids this discretiza-
tion sometimes results in poorly formed control vol-
umes for velocities. In addition to this a large num-
ber of faces on tetrahedral grids would require an
excessive memory storage for face-centered vector
variables. A more conventional approach involves
placing the velocities at cell-centers and pressure at
the cell vertexes, which will still retain the staggered
nature of the discretization. In this case it is possible
to use the FE procedure described above for the so-
lution of the Poisson equation for pressure and the
CV approach to handle the convective fluxes. This
will result in a mixed finite element/ control volume
formulation.

In some situations a completely vertex-based for-
mulation will be of extra convenience, especially in
problems with changing geometries. In this case,
instead of solving the Poisson equation for pres-
sure a pseudo-compressibility concept [20] can be
employed. This approach proved to be especially
convenient for tackling moving boundary problems
and fluid-structure interaction effects [21] (see also
Sec.4).

In problems involving turbulent flows and associ-
ated particle transport a sophisticated subgrid turbu-
lence models are often used. One submodel of this
type, RFG [23], is used in the current system to ex-
tend the flow solvers with turbulence modelling capa-
bilities, and increase the accuracy of particle/bubble

6

transport simulations. A model like this is usually in-
cluded as a sub-module for the host flow solver.

In the current framework it is possible to create
composite solvers. Generally, when two sub-models
are merged, a larger set of variables is created,
which is a union of variables of the respective sub-
models. The set of elements can likewise be ex-
tended if the respective sub-models operate on dif-
ferent elements. Whenever the variables of two
models reside on the same elements and have the
same names they are merged into a single variable.
The solution procedures of each model will be ap-
plied to these variables in turn. If the variables are
defined on different elements and are not connected
by the model iterator they can in principle be solved
concurrently. This amounts to a next level of paral-
lelism that can be exploited on distributed memory
systems.

3.4 Discrete phase solvers

From the point of view of multi-physics modelling
pursued in this work the distinction between the con-
tinuum and discrete phases is rather vague. This
is due to the fact that every element can be in mo-
tion and in interaction with other elements. A special
case of a discrete phase - a particulate phase, in-
cluding particles, droplets or bubbles, will be repre-
sented by zero-dimensional elements of type points
or nodes. Thus points are considered to be discrete
particles moving inside the mesh. Each point can
have only one link to a single cell of the mesh and no
links to other elements (Table 1). This makes points
different from nodes, which are associated with the
vertices of the mesh. In contrast to points, nodes can
be shared by many cells, and consequently there is
no special link set from nodes to cells, but rather
cell-to-nodes links are used instead. Nodes can
also create dynamic links to each other, which pro-
vides mechanisms for describing bonding in molec-
ular dynamics, cytoskeletal structures in biological
cells, struts in engineering structures, etc. (Sec.4).

While point-elements are mainly associated with
discrete particulate phase, the nodes are used to
represent both discrete and continuum properties

Figure 5: Controlling particle population by dynamic
lists: reviving a dead particle.

depending on the application. The distinctive fea-
ture of discrete phase dynamics is the relative mo-
bility and constantly changing connectivity of the el-
ements that host the discrete model. Using dynamic
connectivities between points, edges and cells in the
modelling of the discrete phase enables the repre-
sentation of a broad range of dynamical systems, the
examples of which are shown in Sec.4.

The operation of creation and destruction of el-
ements can be especially time consuming if mem-
ory allocation/deallocation is involved. In the case
of discrete phase simulations it is important to
do these operations efficiently, since particle cre-
ation/destruction events may be quite frequent. For
the cases when the number of elements can change
frequently a special dynamic population model is
used where discrete elements are arranged in spe-
cial ring lists (Fig.2). These lists have active and
inactive (dead) areas. When element is created or
destroyed it is simply moved from one area in the list
to another, via pointer assignment operations (Fig.5)
avoiding expensive dynamic memory calls. Particle
dynamics is done in a Lagrangian framework and is
based on Newton’s equations of motion of the type:

m
dV
dt

� F
� �

Pj � j � 0 � Np U � (10)

where m, V are mass and velocity of a particle,
and F is a function of properties of other particles
Pj, and other variables in the model, not necessary
associated with particles, such as electromagnetic

7

fields, or a local flow velocity at particle’s position
(U). This coupling between the discrete and contin-
uum phases is usually done by means of interpola-
tion of the continuum variables defined on the mesh
to the particle positions inside each cell. The reverse
effect of particles on the continuum variables can be
computed in similar manner by means of account-
ing for particle contributions to each mesh-variable
associated with the cell hosting a particle.

When particle-flow and particle-particle interac-
tions are involved a special probabilistic implicit in-
teraction scheme (PII) is used [17], which is charac-
terized by a linear dependence of the execution time
on the number of particles.

4 Applications

Currently the system has the following set of inte-
grated models:

1. Flow models

(a) Control-volume flow solver based on artifi-
cial compressibility concept (Sec.3.1) [22].

(b) The random flow generation algorithm
(RFG) for turbulent flow modelling devel-
oped by the author [23].

2. Particle models

(a) Lagrangian models of particles and bub-
bles coupled with control-volume and RFG
flow solvers (see items 1a,1b above) sup-
plied with several different equations of
motion [24, 25].

(b) Particle interaction mechanisms based on
PII scheme [17].

3. Tool-assisted mesh generation algorithm based
on a tissue growth model [26]

4. Elastic membrane dynamics coupled with the
flow solver (item 1a above).

5. FEM solver for the Poisson equation.

6. The dynamics and fracture of connected struts
under gravity and inertial forces.

7. Molecular dynamics with bond formation.

8. Simple lattice structures (hexahedral, diamond,
dodecahedral).

The modelling approach proposed here allows the
building of composite solvers and executing of sev-
eral models in a single simulation. Several examples
below illustrate the flexibility of generating different
models.

The example in Fig. 6 illustrates the application of
a control-volume based flow solver formulated for
unstructured meshes coupled with the finite-element
elasticity solver for the membrane. The prototype
simulation was capable of reproducing transient flow
regimes and membrane deformations.

Figure 7 illustrates the mesh generation algorithm
based on a tool-assisted mesh generation concept
proposed by the author [26].

Figure 8 shows the process of particle transport in
bifurcating ducts, and deposition on the walls. The
simulation was done using a coupled flow-particle
solver in Eulerian-Lagrangian formulation.

Figure 9 shows an example of a complex flow
through overlapping domains. The domain coupling
scheme enables the representation of topologically
complex geometries, and can be used for parallel ex-
ecution on distributed memory computer platforms.

Figure 10 shows an example of molecular dynam-
ics simulation of atoms self-assembling around an-
other group of atoms. Each atom is represented
by a point-element with dynamic bonding to other
elements. Two different types of atoms were used
in the simulation: immobile atoms arranged in a Y-
shaped structure representing a lattice, and mobile
atoms that could interact with the atoms of the lat-
tice and each other. The Lennart-Jones interaction
forces of different types were prescribed to the dif-
ferent groups of atoms. After initializing the domain
with the random distribution of the mobile atoms, the
dynamics of the atoms results in an ordered arrange-
ment, depending on the strengths and radii of the
interaction potentials.

8

(a) Surface stresses

(b) Internal flow

Figure 6: Penetration of a solid object inside the elastic
membrane filled with fluid

Figure 7: Generation of biological structures using tissue-
growth model (mulphys.org/tam)

Figure 8: Particle transport and deposition in lungs
(mulphys.org/biomed)

9

Figure 9: Flow through the coupled domains.
http://mulphys.org/dove

Figure 10: Self-assembly of atoms.
http://mulphys.org/nano

Figure 11: Coalescence of bubbles in a turbulent water
stream (www.mulphys.org/particles).

Figure 11 shows the dynamics of coalescing bub-
bles in turbulent water stream computed with the
PII scheme [17]. Other simulations involve particles
in electromagnetic fields and colliding particle jets
(mulphys.com/jets).

Figure 12 shows a fragment of a simulated build-
ing collapse. The model uses a concept of ”heavy”
nodes connected by elastic struts. The braking of a
strut can occur as its length or the angles it forms
with other struts change beyond certain limits. Multi-
body interaction mechanism was implemented to en-
able the modelling of collisions of different previously
not-connected elements of the structure as they col-

10

Figure 12: A damaged structure collapsing under its own
weight (http://mulphys.org/collapse).

lapse toward the ground.

5 Conclusions

By creating a bridge between continuum and dis-
crete dynamics the described approach enables
modelling multi-phase flow systems, involving par-
ticle transport, deposition, and turbulence.

By using a multi-domain multi-model approach
complex multi-physics modelling becomes possible
with applications, involving fluid-structure interac-
tion, fluid-acoustic, electromagnetic and radiative ef-

fects.
Based on a rich hierarchy of geometrical con-

structs and dynamic connectivities, the methods de-
veloped during this work can be successfully applied
to the area of cellular mechanics, bio-mechanics and
bio-fluids. A typical example is the problem of flexible
tissue dynamics subjected to unsteady flow-fields.

In a broader perspective this approach has a po-
tential to bridge together the paradigms of contin-
uum mechanics and molecular dynamics in mod-
elling sub-micron and nano-systems.

References

[1] Svante Littmarck. Math, models, motion, and
more. PT Design, May 2000.

[2] Svante Littmarck. Solving differential equations.
The Industrial Physicist, pages 21–23, Febru-
ary 2001.

[3] J. Thilmany. More than one force of nature. Me-
chanical Engineering, 124, 2002.

[4] M. McManus, K. andCross, C. Walshaw,
S. Johnson, and P. Leggett. A scalable strat-
egy for the parallelization of multiphysics un-
structured mesh-iterative codes on distributed-
memory systems. International Journal of
High Performance Computing Applications,
14(2):137–174, 2000.

[5] S.M. Rifai, Z. Johan, W-P. Wang, T. J. R. Gris-
val, J-P. Hughes, and R. M. Ferencz. Mul-
tiphysics simulation of flow-induced vibrations
and aeroelasticity on parallel computing plat-
forms. Computational Methods in Applied Me-
chanical Engineering, 174(3-4):393–417, 1999.

[6] M. A. Troscinski. Real-world modeling keeps
analysis honest. Machine Design, 68:66–8,
1996.

[7] J.P. Lemaitre. Multiphysics behaviors. In Hand-
book of materials behavior models, volume 3,
pages xxvii, 1200. Elsevier Science & Technol-
ogy Books, 2001.

11

[8] Magorzata Peszynska. Multiphysics coupling
for two phase flow in degenerate conditions. In
Advanced techniques and algorithms for reser-
voir simulation: The IMA Volumes in Mathemat-
ics and its Applications, volume 131, pages 21–
39. Springer, New York, 2002.

[9] C. Bailey and S. Bounds. Multiphysics modeling
and its application to the casting process. Com-
puter Modeling & Simulation in Engineering, 4,
99.

[10] I. Yotov. A multilevel newton-krylov interface
solver for multiphysics couplings of flow in
porous media: Solution methods for large-scale
non-linear problems. Numer. Linear Algebra
Appl., 8:551–570, 2001.

[11] C. Bailey, G. A. Taylor, M. Cross, and P. Chow.
Discretisation procedures for multi-physics phe-
nomena: Applied and computational topics in
partial differential equations (gramado, 1997).
J. Comput. Appl. Math., 103(1):3–17, 1999.

[12] Barry Smith, Petter Bjørstad, and William
Groupp. Domain Decomposition, Parallel Mul-
tilevel Methods for Elliptic Partial Differential
Equations. Cambridge University Press, 1996.

[13] Alfio Quanteroni and Alberto Valli. Domain
Decomposition Method for Partial Differential
Equations. Oxford Science Publications, 1999.

[14] Dihn, Q.V., Glowinski, R. and Periaux, J. Solv-
ing elliptic problems by domain decomposition
methods with applications. In G. Birkhoff and
A. Schoenstadt, editor, Elliptic Problem Solvers
II. Academic Press, New York, 1984.

[15] J.H. Ferziger and M. Peric. Computational
Methods for Fluid Dynamics. Springer Verlag,
1997.

[16] P.M. Gresho and R.L. Sani. Incompressible
Flow and the Finite Element Method: Isother-
mal Laminar Flow, volume 2. John Wiley &
Sons, Ltd.; ISBN: 047149268X, 2000.

[17] A. Smirnov and I. Celik. A Lagrangian particle
dynamics model with an implicit four-way cou-
pling scheme. In The 2000 ASME International
Mechanical Engineering Congress and Exposi-
tion. Fluids Engineering Division, volume FED-
253, pages 93–100, Orlando, Fl, 2000.

[18] A.V. Smirnov. Domain coupling with the DOVE
scheme. In Parallel CFD 2003, Moscow, Rus-
sia, 2003. Russian Academy of Sciences.

[19] S.V. Patankar. Numerical Heat Transfer and
Fluid Flow. McGraw-Hill, 1980.

[20] K.A. Hoffman and S.T. Chiang. Computational
Fluid Dynamics for Engineers. Engineering Ed-
ucation System, Wichita, Kansas, 1993.

[21] A.V. Smirnov, W. Huebsh, and C. Menchini. A
flow-solver with flexible boundaries. In IASTED
International Conference, number 380-252 in
Modelling and Simulation, Palm Springs, CA,
2003.

[22] K.A. Hoffman and S.T. Chiang. Computational
Fluid Dynamics for Engineers, volume 1. En-
gineering Education System, Wichita, Kansas,
1993.

[23] A. Smirnov, S. Shi, and I. Celik. Random flow
generation technique for large eddy simulations
and particle-dynamics modeling. Trans. ASME.
Journal of Fluids Engineering, 123:359–371,
2001.

[24] G. Sridhar and J. Katz. Drag and lift forces
on microscopic bubbles entrained by a vortex.
Phys. Fluids, 7(2):389–399, 1995.

[25] S. Elghobashi and J. Lasheras. Effects of Grav-
ity on Sheared Turbulence Laden with Bubbles
or Droplets. In 3-rd Microgravity Fluid Physics
Conference, Cleveland, OH, 1996.

[26] A.V. Smirnov. Tool assisted mesh genera-
tion based on a tissue-growth model. Medi-
cal and Biological Engineering and Computing,
41(4):494–497, 2003.

12

