
3-D FEM Discretization of Poisson Equation
on Tetrahedral and Hexahedral Meshes.

A.Smirnov

July 13, 2004

Contents

1 Governing Equations 2

2 A 3-D FEM Discretization Scheme for the Poisson Equation 2
2.1 Poissson equation in a general form . . . . . . . . . . . . 2
2.2 Deriving matrix coefficients . . . . . . . . . . . . . . . . . . 5

2.2.1 Coefficients for tetrahedral elements . . . . . . . . 6
2.2.2 Coefficients for hexahedral elements . . . . . . . . 8

2.3 Iterative scheme . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Poissson equation in a gradient-source form . . . . . . . . 12

2.4.1 Deriving coefficients cα i j . . . . . . . . . . . . . . . 15

3 A 3-D Cell-Centered Discretization Scheme for the Poisson
Equation 16
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A Some relations 19
A.1 Volume of a polyhedron . . . . . . . . . . . . . . . . . . . 19
A.2 Center of mass of a polyhedron: Method 1 . . . . . . . . . 20
A.3 Center of mass of a polyhedron: Method 2 . . . . . . . . . 21
A.4 Coefficients for hexahedral elements. . . . . . . . . . . . . 21

B General Neuman boundary conditions 22

1



1 Governing Equations

Consider the boundary value problem:

∆P
�
x ��� f

�
x �

P
�
x ��� x � ∂0D � f 0 � x � (1)

∂P
�
x �

∂n
� x � ∂1D � �

∇P � n � x � ∂1D � f 1 � x � (2)

where
�
	 � 	 � denotes a scalar product operation on two vectors, x repre-

sents a vector of coordinates x ��� xi 
�� i � 1 : Nd in Nd dimensional space
(Nd � 3), n is the normal vector to the boundary ∂iD of the domain D with
i � 0 representing Dirichlet and i � 1 - Neuman boundary.

In what follows we consider 3D discretization schemes for this problem
based on finite-element (FEM) and control volume (CVM) methods.

2 A 3-D FEM Discretization Scheme for the Poisson
Equation

In this section we consider the Finite-Element discretization scheme for
equation system (1)-(2) used to solve vertex-based scalar field variables
on a tetrahedral mesh.

2.1 Poissson equation in a general form

Let’s represent the functions used in the boundary value problem (1) as a
super-position of the basis functions φi

�
x � . This superposition will apply to

both the solution variable P
�
x � and source functions, f

�
x � � f k � x � k � 0 � 1:

P
�
x ��� N

∑
i � 1

piφi
�
x �

f
�
x ��� N

∑
i � 1

fiφi
�
x � (3)
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and the same for the boundary values f 0 � x � and fluxes f 1 � x �
f k � x ��� N

∑
i � 1

f k
i φi

�
x � � k � 0 � 1 (4)

where N is the number of grid nodes. Each function φi
�
x � is a linear func-

tion inside the element containing node i and zero in all the elements not
containing node i. Inside the elements containing node i φi

�
x � is unity at

the node i and zero at the face lying opposite to the node. For example,
in Fig.1 the φ0 � 1 at node 0 and zero at face

�
1 � 2 � 3 � . The distribution of

the function values inside the tetrahedron is linear, with φ0
�
x � being con-

stant on the planes parallel to
�
1 � 2 � 3 � , like plane

�
1 � � 2 � � 3 ��� , and equal to

φ0 � 1 � ξ, where ξ is a continuous parameter between 0 and 1, with 0
corresponding to node 0 and 1 to the plane

�
1 � 2 � 3 � . Thus, if h is a distance

between node 0 and plane
�
1 � 2 � 3 � then ξh is a distance between the node

0 and plane
�
1 � � 2 � � 3 � � . Each function φi

�
x � is piece-wise continuous in the

whole domain (first derivatives are discontinuous), and their total number
is finite and equal to N. We shall denote the space of these functions as
C0

N.
Multiplying (1) by a test function ψ � ψ

�
x � , integrating over the whole

domain D, and using integration-by-parts to get rid of Laplacian operator
(∆), we get1�

D
ψ∆Pd3x ���

∂D
ψ
�
∇P � n � d2x � �

D

�
∇ψ � ∇P � d3x � �

D
ψ f d3x (5)

where n is a unit vector normal to the domain boundary ∂D, and d2x is a
boundary surface area element. Introducing boundary conditions (2) into
the boundary integral of (5), we have �

D

�
∇ψ � ∇P � d3x �� �

∂0D
ψ
�
∇P � n � d2x � �

∂1D
ψ f 1 d2x � �

D
ψ f d3x (6)

Substituting (3), (4) into (6) and getting constants pi � fi � f k
i outside the

integration sign we have
1in what follows we omit arguments � x � for brevity
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Figure 1: Integrating over a tetrahedral element.

N

∑
i � 1

pi

�
D

�
∇ψ � ∇φi � d3x �

� N

∑
i � 1

f 0
i �

∂0D
ψ
�
∇φi � n � d2x � N

∑
i � 1

f 1
i �

∂1D
ψφi d2x � N

∑
i � 1

fi

�
D

ψφid3x (7)

A simple choice of test function is from the same function space as φi,
namely ψ � C0

N. With this choice we have ψ � φ j and (7) becomes

N

∑
j � 1

c1
i j p j � si (8)

si � N

∑
j � 1 � b0

i j f 0
j � x � ∂0D � b1

i j f 1
j � x � ∂1D � c0

i j f j � x � D � (9)
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where we introduced definitions

c0
i j � �

D
φiφ jd3x (10)

c1
i j � �

D
∇φi∇φ jd3x (11)

b0
i j � �

∂0D
φi
�
∇φ j � n � d2x (12)

b1
i j � �

∂1D
φi φ jd2x (13)

The coefficients cn
i j above are also called the stiffness matrix coeffi-

cients in FEM literature. The influence of the boundaries is given by terms
(12) and (13). Since the Dirichlet boundary conditions should keep the
values at the boundary fixed, one should exclude from the set of test func-
tions those which are non-zero at the Dirichlet boundary, i.e. φi � ∂0 � 1.
This will make the first boundary integral (12) equal to zero. With regard to
the second boundary integral (13), let’s consider the case of zero-Neuman
boundary conditions, i.e. f 1 � 0. Then this integral can also be neglected2,
since its contribution will be zero by virtue of (9). After excluding the bound-
ary integrals from relation (8), we have

N

∑
j � 1

c1
i j p j � si (14)

si ��� N

∑
j � 1

c0
i j f j

Since functions f � f k are known, and all functions φi are well defined
and linear, the integrals for the coefficients (10), (11) can be computed
analytically, and then the problem (1) will be reduced to solving algebraic
system of equations (14) for unknown pi.

2.2 Deriving matrix coefficients

In this section we derive the analytical expressions for the matrix coeffi-
cients (10), (11). In contrast to a conventional approach [1, 2] we avoid

2for the case of non-zero Neuman boundary (2) see App.B
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using Jacobian transformation matrices. Instead we rely on simple rules
of geometrical differentiation, which results in rather compact expressions
well suited for implementation in a computer code (see comments at the
end of Sec.2.2.1).

By grid we understand a connected set of elements. By element we
understand a connected set of vertexes. Each vertex of an element repre-
sents a node in the grid and is defined by it’s coordinates xi � i � 1:Nd , where
Nd is the dimensionality of the problem (Nd � 3 in our case).

Now consider the volume integrals (10), (11). The integration spans
the whole domain, D. Since D is sub-divided into polyhedral elements we
can re-write (10) and (11) as

c0
i j � Ne

∑
k � 1

�
Ek

φiφ jd3x � Ne

∑
k � 1

c0 � k
αiβ j

(15)

c1
i j � Ne

∑
k � 1

�
Ek

∇φi∇φ jd3x � Ne

∑
k � 1

c1 � k
αiβ j

(16)

where Ne is the number of grid-elements or cells, and the subindexes α � β
are now indexes of element vertexes corresponding to grid nodes i � j inside
each element. The coefficients c  � kαβ are obtained by performing integration
over each separate element.

c0 � k
αβ � �

Ek

φαφβd3x (17)

c1 � k
αβ � �

Ek

∇φα∇φβd3x (18)

2.2.1 Coefficients for tetrahedral elements

Let’s perform the integration of coefficients (17), (18) for tetrahedral ele-
ments. Here we shall drop for convenience the super-index k, implying
that the integration is performed within a single element. We shall also
compute only coefficients c0

01 � c1
01 betweem element α � 0 and β � 1. The

result will be valid for any other coefficients α � β. For a tetrahedral element
(Fig.1) the integration can be done as follows3

3We skip index k for brevity
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c0
00 � � h0

0
A1 ! 2 ! 3 ! φ2

0
�
ξ � dh �

� h0

� 1

0
A1 ! 2 ! 3 ! φ2

0
�
ξ � dξ � h0A123

� 1

0
ξ2 � 1 � ξ � 2dξ (19)

where h � h0ξ, A1 ! 2 ! 3 ! � ξA123 and h0 � h04 (see Fig.1).

c0
01 � h0

� 1

0
φ0
�
ξ � h1 ! 5 ! � 1

0
φ1
�
1 � � � 1 � η � l2”3”dηdξ

� h0

� 1

0
φ0
�
ξ � h1 ! 5 ! l2 ! 3 ! φ1

�
1 � � � 1

0
η
�
1 � η � dηdξ

� h0h15l23

� 1

0
ξ2φ0

�
ξ � φ1

�
1 � � � 1

0
η
�
1 � η � dηdξ

Now, from the linearity of φi we have φ0
�
ξ �"� 1 � ξ, φ1

�
1 �#�"� ξ, and

consequently

c0
01 � h0h15l23

� 1

0
ξ3 � 1 � ξ � � 1

0
η
�
1 � η � dηdξ

� 2h0 A123

� 1

0
ξ3 � 1 � ξ � dξ

� 1

0
η
�
1 � η � dη (20)

c0
02 � c0

03 � c0
01 (21)

Which for any two local indexes α � β will become

c0
αα � hαAα

� 1

0
ξ2 � 1 � ξ � 2dξ � 1

30
hαAα � 1

10
V (22)

c0
αβ � 2hα Aα

� 1

0
ξ3 � 1 � ξ � dξ

� 1

0
η
�
1 � η � dη � 1

60
hα Aα � 1

20
V (23)

where hα is the height vector of the tetrahedron dropped from node α onto
the face Aα facing this node. As can be seen, cαβ does not depend on β,
that is, for each vertex α it is the same for all three vertexes on the face
facing node α.

Now, let’s consider the coefficients c1
αβ. The derivatives of φi at node

i � 0 can be computed, considering that �∇φ0 �$� 1 % h0, and is directed along
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segment � 40 
 . Generally, �∇φα �&� 1 % hα, and is directed along the vector
normal to the plane opposite to node i. Thus, we have

c1
00 � h0

� 1

0
A1 ! 2 ! 3 ! �∇φ0

�
ξ �'� 2dξ �

h0A123

� 1

0
ξ2 1

h2
0

dξ � A123

h0

� 1

0
ξ2dξ � 1

3
A123

h0
(24)

c1
01 � h0

� 1

0
h1 ! 5 ! � 1

0
l2”3”

�
∇φ0 � ∇φ1 � dηdξ

� h0h15

� 1

0
ξl2 ! 3 ! � 1

0
η
�
∇φ0 � ∇φ1 � dηdξ

� h0h15l23

� 1

0
ξ2
� 1

0
η
�
n0 � n1 �
h0h1

dηdξ

� 2h0A123

h0h1

�
n0 � n1 � � 1

0
ξ2dξ

� 1

0
ηdη � 1

3
A123

h1

�
n0 � n1 � (25)

And generally,

c1
αβ � 1

3
Aα
hβ

�
nα � nβ �(� 1

9
AαAβ

V
�
nα � nβ ��� �

aα � aβ �
9V

(26)

Now let’s reinstall the k-indexes that we dropped earlier for conve-
nience, and use the results (22), (23) and (26) to assemble the stiffness
matrix coefficients (15) and (16). As can be seen from (22), (23) and (26)
the only information required for the computations are the volumes of the
cells4 and vector areas of the faces. This makes the expressions very suit-
able for implementation in a computer code, since the vector areas and
volumes are usually computed within the solver, and the computation of
the coefficients according to (22), (23) and (26) involves at worst just a
simple scalar product operation (26).

2.2.2 Coefficients for hexahedral elements

For hexahedral elements each basis function φ
�
x � has 7 overlapping ba-

sis functions corresponding to the neighboring nodes (Fig.2). Since the
4see Appendix A.1 on how to compute the volumes
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Figure 2: Integrating over a hexahedral element.

assembly operation is performed locally to each element, we shall con-
fine the further discussion to one element, and denote all functions corre-
sponding to the vertices of that element as φα1 � α2 � α3, where αi � 0 � 1, thus
giving eight functions φ000 � φ001 �*)+) φ111. Now we shall compute the integrals
(17), (18), and as in the Sec.2.2.1 we shall drop index k, and without loss
of generality we can consider the only matrix coefficients related to func-
tion φ000: c000;000 � c000;001 �*)+)�)+� c000;111. Let’s select a local coordinate system
ξi with the origin at node 000.

As a first step a general hexahedral element is transformed into a per-
fect cube with edges of length 1, using the appropriate scaling operations
and orthogonal rotations:

ηi � xi � x0
i

∆xi
(27)

ξi � Ji jη j (28)

where xi �,� x1 � x2 � x3 
 , and ξi �-� ξ1 � ξ2 � ξ3 
 . Using a compact tensor nota-
tion each basis function can be written as

φα1α2α3

� � ξi 
 ��� 3

∏
i

�
αiξi � � 1 � αi � � 1 � ξi �*� (29)

and the non-dimensional matrix elements c̃0 � 1
000;α1α2α3

, (see (17), (18)), can
be computed as follows:
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c̃0
000;α1α2α3

� �
φ000

�/.
ξ � φα1α2α3

�/.
ξ � dξ1 dξ2 dξ3 � (30)

� � 3

∏
i

�
1 � ξi � 3

∏
j

�
α jξ j � � 1 � α j � � 1 � ξ j �*� d3ξ (31)

c̃1
000;α1α2α3

� � �
φ000

� .
ξ �*� � k � φα1α2α3

� .
ξ �*� � kd3ξ � (32)

� � 3

∑
k

0
3

∏
i

�
1 � ξi �21 � k

0
3

∏
j

�
α jξ j � � 1 � α j � � 1 � ξ j �*�21 � k d3ξ (33)

where αi coefficients are either 0 or 1: � αi 
 � 0 � 1, and we use a tilde to
signify that the coefficients are computed in a non-dimensional coordinate
system. The eight coefficients are:

c̃0
000;000 � 1

27 � c̃0
000;111 � 1

216

c̃0
000;001 � c̃0

000;010 � c̃0
000;100 � 1

54

c̃0
000;011 � c̃0

000;110 � c̃0
000;101 � 1

108

c̃1
000;000 � 1

3
c̃1

000;001 � c̃1
000;010 � c̃1

000;100 � 0

c̃1
000;011 � c̃1

000;110 � c̃1
000;101 � c̃1

000;111 � � 1
12

which corresponds to the eight corners of the cube shown in Fig.2. The
procedure for computing the coefficients is given in App.A.4. For a uniform
Cartesian grid with equal grid spacing in all three directions the dimen-
sional matrix elements will be related to the non-dimensional ones by the
following relations

c0
i j � V c̃0

i j

c1
i j � V 1 3 3c̃1

i j (34)
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where V is the volume of the cell: V � dxdydz � �
dx � 3, and we returned

back from cell-local indexes αi � βi � 0 � 1 to grid-global indexes: i � j. Rela-
tion (34) is valid for a general rectangular grid. For non-uniform and non-
orthogonal grids a more complex matrix transformation will be necessary
with the coefficients determined by the jacobian of transformation (28).

2.3 Iterative scheme

Since the basis functions φi are non-zero only for the elements that include
node i as one of their vertexes, we can restrict the summation in (15) (16)
to those elements Ek that include both nodes i � j, since all other elements
will give a zero contribution to the integral. This can be done by looping
through all elements and computing contributions to those ci j that have
both nodes (i � j) belonging to that element, which is called the assembly
procedure in FEM. In addition to this one does not have to store large two
dimensional arrays of size N 4 N for ci j since they are very sparse. As an
illustration consider the solution of the equation system (14) using a Jacobi
iteration scheme.

pn 5 1
i �6� 1

c1
ii

0
N

∑
j � 1

c0
i j f j � N

∑
j 7� i

c1
i j p

n
j 1-��� Ai � Cn

i

c1
ii

(35)

Ai � N

∑
j � 1

c0
i j f j (36)

Cn
i � N

∑
j 7� i

c1
i j p

n
j (37)

The iteration scheme (35) can be realized as follows. First compute coef-
ficients c1 � k

ii in (35) using (16) and (26) as in Figure 35. Then assembly the
Ai coefficients, representing source terms due to f in (1) in a loop over all
cells (Fig.4).

Coefficients Cn
i can be repeatedly assembled together with upgrading

variable values of p in (1) in two subsequent loops (Figs.5,6).
Loops (5) (6) can be included into another iteration loop (38) to guar-

antee convergence:
5We use the C-language convention to start indexes from 0
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for (ic=0; ic<Nc; ic++)
{ //loop over the cells

int nv=Nv[ic]; //number of vertexes
float vol=Vol[ic];//cell-volume
for (iv=0; iv<nv; iv++)
{ //loop over the vertices

inode=NodeIndex(ic,iv);
a=Area(ic,iv);
C1ii[inode]+=a[inode]*a[inode]/(9.*vol);

}
}

Figure 3: Assembly of c1
ii.

while
� �Pn 5 1 � Pn �98 ε �

Assemble Ci
�
Fig ) 5 �

U pdate Pi
�
Fig ) 6 �

(38)

The difference in handling of Dirichlet vs zero-Neuman boundaries is
in that there is no looping over the boundary nodes for the Dirichlet bound-
ary in (6), whereas all the boundary nodes are included for the Neuman
boundary.

2.4 Poissson equation in a gradient-source form

Consider a modified boundary value problem (1):

∆p
�
x ��� ∇ � g � x �

p
�
x �:� x � ∂0D � f 0 � x � (39)

∂p
�
x �

∂n
� x � ∂1D � �

∇ p � n � x � ∂1D � f 1 � x � (40)
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A[*]=0;
for (ic=0; ic<Nc; ic++)
{ //loop over the cells

int
nv=Nv[ic]; //number of vertexes for cell ic

float
c0ii=0.10*Vol[ic],//compute c-coeffs
c0ij=0.05*Vol[ic];

for (iv=0; iv<nv; iv++)
{ //loop over all the cell-vertexes

inode=NodeIndex[ic,iv]; //global index
A[inode]+=c0ii*f(inode);
for (jv=0; jv<nv-1; jv++)
{ //cell vertexes connected to vertex iv

jnode=NodeIndex[ic,(iv+jv+1)%nv];
A[jnode]+=c0ij*f(jnode);

}
}

}

Figure 4: Assembly of Ai coefficients.

where the source term has a gradient form ∇ � g with g a given vector field.
This form is encountered in many applications, like in the equation for elec-
tric potential field or for a pressure field in in Navier Stokes equation. As
far as the previous derivation is conserned this will affect only the last term
in (6), which now becomes�

D

�
∇ψ � ∇ p � d3x �6� �

D
ψ∇ � gd3x (41)

Here we neglected the boundary integrals, on the grounds given in Sec. 2.1.
Discretizng it further, analogously to (7), we have

N

∑
i � 1

pi

�
D

�
∇ψ � ∇φi � d3x � � N

∑
i � 1

�
gi � �

D
ψ∇φid3x � (42)

Renaming indexes and choosing ψ � φ j we can reduce the above to
the form of (14), namely

13



C[*]=0;
for (ie=0; ie<Ne; ie++)
{ //loop over the cells

int nv=Nv[ie]; //number of vertexes
float vol=Vol[ie];//cell-volume
for (i=0; i<nv; i++)
{ //loop over all the cell-vertexes

inode=NodeIndex[ie,i]; //global index
p=P[inode];//variable value at vertex i
for (j=0; j<nv-1; j++)
{ //cell vertexes connected to vertex i

jnode=NodeIndex[ie,(i+j+1)%nv];
c1ij=SCLP(a[i],a[j])/(9*vol);
C[jnode]+=c1ij*p;

}
}

}

Figure 5: Assembly of Ci coefficients.

for (i=0; i<Nn; i++)
P[i]=(A[i]-B[i])/C1ii[i];

Figure 6: Updating all the node values for p.

N

∑
j � 1

c1
i j p j � si (43)

si ��� N

∑
j � 1

ci j � g j

where the source term can be explicitly written as

si ��� N

∑
j � 1

cα i jgα j (44)
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cα i j � �
D

φi � αφ jd3x (45)

where α � 1 � 2 � 3 designates the number of a Cartesian vector component.

2.4.1 Deriving coefficients cα i j

This time instead of coefficients c0
i j defined in (15) we have to use

cα i j � Ne

∑
k � 1

�
Ek

φi � αφ jd3x � Ne

∑
k � 1

c0 � k
α i j (46)

which should be integrated on each tetrahedral element (Fig.1). Since φi
is a linear function, the derivative φi � α is a constant vector directed from
node i to the opposite face and equal to

φi � α � h ; i <α

h ; i <β h ; i <β

� h ; i <α

h2; i < (47)

where h ; i <α is a face-normal vector, connecting node i and the opposite
face6, and h ; i < � h ; i <β h ; i <β . Now (46), considering that φ can be parametrized
as φi

�
ξ �=� ξ, where ξ is 1 at the node i and 0 at the opposite face, and φi

�
ξ �

changes linerarly between the two, then (46) can be easily integrated

cα i j � h ; i <α

h2; i < h ; j < A ; j <
� 1

0

�
1 � ξ � φ j

�
ξ � dξ �

h ; i <α

h2; i < h ; j < A ; j �
� 1

0

�
1 � ξ � ξdξ � h ; i <α

h2; i < h ; j < A ; j <?> ξ
2

2
� ξ3

3 @ 1

0
(48)

� h ; i <α

h2; i < 1
6

3V ; j < � 1
2

h ; i <α

h2; i < V ; j < (49)

Where V ; j < is the volume of a cell, which is the same for all j � s: V ; j < � V .

6there is no summation over indexes in parenthesis
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3 A 3-D Cell-Centered Discretization Scheme for
the Poisson Equation

In this section we consider a finite-volume discretization scheme used to
solve cell-centered scalar field variables on a tetrahedral grid.

3.1 Method

Consider a boundary value problem (1):
Let’s consider a cell-centered location of grid variables for p on a gen-

eral non-structured grid in n-dimensions. The Laplace operator, ∆, can be
represented as7

∆ p � ∇ � ∇ p � ∂2 p
∂x2

i� ∂
∂xi A ∂ p

∂xi B � �
p � i � � i (50)

or

∆ p � p � ii (51)

For a smooth function φ � C2 the Gauss-theorem states�
C

φ � idV � �
∂C

φdai (52)

where dV is the volume element and dai is the i-th Cartesian component
of the outward normal surface area-element vector d .a of the boundary
surface ∂C of the cell. Using (52), we can approximate the gradient φ � i as

φ � i C 1
V

�
∂C

φdai

where V �ED C dV is the volume of the grid cell. For a simple polygonal cell
the latter reduces to

7We use the definition f F i G ∂ f
∂xi

and repeated indexes imply summation.
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φ � i C 1
V

φk ak
i (53)

where index k � 1 : N f spans all the faces of the element and we use
our summation rule. The value of φk should be evaluated at the k-th face
between the current cell and its k-th neighbor.

Using p � i instead of φ in (50) and using (53) we have

∆ p � p � ii � 1
V

pk� iak
i (54)

In this expression pk� i represents the i � th component of gradient of p
evaluated at k-th face. A natural approximation for (54) in a cell-centered
scheme is

pk� iak
i C pk � p

dk nk
i ak

i (55)

where p is the value of the variable at the current cell-center, pk is it’s value
at the center of the neighbor cell k, dk is the distance between the current
and the neighbor cell centers, nk

i is the face outward normal unit vector:

dk �,H∑
i

�
xk

i � xi � 2 I 1 3 2 (56)

nk
i � ak

i
ak (57)

Substituting (57) into (55) and using the relation for the face area: ak of
the k-th face:

ak � �
∑

i
ak

i ak
i � 1 3 2 (58)

we have

pk� iak
i C pk � p

dk ak (59)

Substituting (59) and (54) into (1) we have

ak

V
� pk � p

dk � f (60)
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for (c=1; c<Nc; c++)
{ //Looping over all Nc cells
A=0; B=0; V=Volume(c);
for (b=1; b<Nb(c); b++)
{ //Looping over neighbor-cells

d=Distance(b,c);
a=FaceArea(Face(b,c))/d;
A+=a*P[b];
B+=a;

}
P[c]=(A-V*f(c))/B;

}

After rearranging the terms we have

A � B p � f (61)

A � 1
V ∑

k

ak pk

dk (62)

B � 1
V ∑

k

ak

dk (63)

Equation (61) is applied to a single cell C. It can be used to compute
(1) in a simple iterative scheme (Jacobi/Gauss-Seidel):

pn 5 1 � A
�
pn ��� f
B
�
pn � (64)

which can be realized in repeated looping over cells like this
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A Some relations

A.1 Volume of a polyhedron

Volume V of a solid body C can be computed as

V � �
C

dV (65)

Using relation

x j � j � 3 (66)

we have

V � 1
3

�
C

x j � jdV (67)

And using the Gauss theorem we get

V � 1
3

�
∂C

x j da j (68)

For a polyhedron with N faces we have

V � 1
3

N

∑
k � 1

xk
j ak

j � 1
3

N

∑
k � 1

xk
j nk

j ak (69)

where xk
j are the center-coordinates of face k, and nk

j, ak are the coordi-
nates of the outward normal unit vector and the area of face k respectively.
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A.2 Center of mass of a polyhedron: Method 1

Center of mass ri of a solid body C can be computed as

ri � 1
V

�
C

xi dV

Using relation 66, we have

ri � 1
3V

�
C

xi x j � jdV

Using �
xi x j � � j � xi � j x j � xi x j � j � δi jx j � xi x j � j

we have

ri � 1
3V > �

C

�
xi x j � � jdV � �

C
xi dV @

ri � 1
3V

�
C

�
xi x j � � jdV � 1

3
ri

Therefore,

ri � 1
4V

�
C

�
xi x j � � jdV

And using Gauss theorem, we have

ri � 1
4V

�
∂C

xi x j da j

For an polyhedron with N faces this becomes

ri � 1
4V

N

∑
k

xk
i xk

j ak
j
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A.3 Center of mass of a polyhedron: Method 2

Center of mass ri of a solid body C can be computed as

ri � 1
V

�
C

xi dV

Using relation 66 we have�
x jx j � � i � 2x j � ix j � 2xi

and for ri:

ri � 1
2V

�
C

�
x jx j � � idV

By Gauss theorem:

ri � 1
2V

�
C

�
x j x j � � idV

� 1
2V

�
∂C

x j x j dai

For an polyhedron with N faces this becomes

ri � 1
2V

N

∑
k

xk
j xk

j ak
i

A.4 Coefficients for hexahedral elements.

The numerical values of the coefficients for hexahedral grid (34) were com-
puted using the following Mathematica procedure [3]

Do[Print[i,j,k];
P0=(1-x)*(1-y)*(1-z);
P1=(i*x+(1-i)*(1-x))*(j*y+(1-j)*(1-y))*(k*z+(1-k)*(1-z));
C0=Integrate[P0*P1,{x,0,1},{y,0,1},{z,0,1}];
Print[C0];
DP0[1]=D[P0,x];
DP0[2]=D[P0,y];
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DP0[3]=D[P0,z];
DP1[1]=D[P1,x];
DP1[2]=D[P1,y];
DP1[3]=D[P1,z];
DP=Sum[DP0[n]*DP1[n],{n,1,3}];
C1=Integrate[DP,{x,0,1},{y,0,1},{z,0,1}];
Print[C1]
,{i,0,1},{j,0,1},{k,0,1}
];

B General Neuman boundary conditions

In the case of non-zero gradient Neuman boundary conditions the second
boundary integral (13) can no longer be neglected. Integration of (13) can
be reduced to the sum of integrals over triangular cells (Fig.7). Although
the integration spans the whole Neuman boundary ∂1D, only the nodes
sharing a common element (triangle) will give contribution to the integral.
Therefore the integral can be split into the sum over the elements as fol-
lows.

bi j � ∑
k � ∂1D

�
Bk

φiφ jd2x � ∑
k � ∂1D

bk
i j (70)

where Bk is a two-dimensional boundary element, which is a face of 3D
element Ek lying at the boundary ∂1D. Integration of (70) produces (Fig.7)
the following result

bk
ii � �

Bk

φiφ jd2x � � h00 !
0

φ2
i
�
h � l1 ! 2 ! dh

� h00 ! � 1

0
φ2

i
�
α � α l12dα � h00 ! l12

� 1

0
φ2

i
�
α � αdα � 2A

� 1

0
φ2

i
�
α � αdα (71)

where A is the area of the triangle (012). Using the linear profile of a shape
function in the given element φi

�
α �J� 1 � α, we have

bk
ii � 2A

� 1

0

�
1 � α � 2αdα � A

6
(72)
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Figure 7: Integrating over a triangular element.

Analogously,

bk
i j � 2A

� 1

0
φi
�
α � � 1 K α

0
φ j
�
β � dαdβ

� 2A
� 1

0

�
1 � α � � 1 K α

0
βdβdα � A

4
(73)

Now we can use these coefficients to solve (8) using Jacobi iteration
scheme.

pn 5 1
i � 1

c1
ii

0
∑

j � ∂1D
bi j f 1

j � Nn

∑
j � 1

c0
i j f j � Nn

∑
j 7� i

c1
i j p

n
j 1

� 1
c1

ii

� � Ai � Bi � Cn
i � (74)

Ai � Nn

∑
j � 1

c0
i j f j (75)

Bi � ∑
j � ∂1D

bi j f 1
j (76)

Cn
i � Nn

∑
j 7� i

c1
i j p

n
j (77)
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where the boundary sum Bi in (76) is non-zero only when element i has at
least one face belonging to the boundary.

The iterative scheme will now include an additional loop over boundary
cells to assemble Bi coefficients, representing boundary source-terms due
to f 1 (Fig.8). The assembly of B coefficients in Fig.8 can be done more
efficiently if the elements are sorted so that the boundary elements occupy
first Nb places in the global elements array.

B[*]=0;
for (iface=0; iface<Nbf; iface++)
{ //loop over the boundary faces

int
nv=Nfv[iface]; //number of vertexes for iface

for (iv=0; iv<nv; iv++)
{ //loop over all the face-vertexes

float
bii=area[iface,iv]/6,//compute c-coeffs
bij=area[iface,iv]/4;

inode=NodeIndex[iface,iv]; //global index
B[inode]+=bii*f1(inode);
for (jv=0; jv<nv-1; jv++)
{ //cell vertexes connected to vertex iv

jnode=NodeIndex[ic,(iv+jv+1)%nv];
B[jnode]+=bij*f1(jnode);

}
}

}

Figure 8: Assembly of Bi coefficients.
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