
Reactive Molecular Dynamics Program
Project Peport

Andrei Smirnov

May 30, 2009

Contents

1 Introduction 3

2 Physical Model 4
2.1 Chemical Reactions . 4
2.2 Cross-Boundary Species . 9

3 Implementation 11
3.1 Collision Detection Scheme . 11

3.1.1 Standard Time-Stepping Scheme 11
3.1.2 Local Time-Stepping Scheme 11
3.1.3 Verlet Lists . 17
3.1.4 Multi-Processor Implementation 17
3.1.5 Dynamic Lists . 18

4 Program Usage 21
4.1 Installation . 21

4.1.1 Step 1: Extracting the archive 21
4.1.2 Step 2: Compiling . 21
4.1.3 Step 3: Running . 21

4.2 Configuration . 22
4.2.1 Input File . 22
4.2.2 Simulation Parameters 22

4.3 Output . 25

1

4.4 Graphics User Interface . 26
4.5 Utilities . 28

4.5.1 Pre-Processing . 28
4.5.2 Post-Processing . 29

5 Conclusions 31

2

1 Introduction

Molecular Dynamics simulations of reacting gaseous mixtures open new pos-
sibilities of investigating complex non-equilibrium phenomena occurring on
micro-scales, such as chemical kinetics and diffusion in porous media, surface
electrochemistry, and micro-scale mixing, to mention just a few. Parameters
of operation of a typical fuel cell allow one to apply classical approximations
of collision theory, thereby increasing the efficiency of simulations. However,
there are several factors that need to be addressed to make these simulations
practical. These include: account of detailed elementary reaction mecha-
nisms, representing all internal degrees of freedom (internal energies) of re-
acting molecules, and the ability to simulate tens of millions of molecules in
a reasonable time.

The Reactive Molecular Dynamics simulation program (ReMoDy) devel-
oped in the course of this study provided solutions to these problems, which
were implemented in the novel time-stepping scheme based on collision de-
tection algorithm and individual molecular time-steps. In this scheme each
molecule advances directly to the time of the next collision, which leads to
significant acceleration of the time-stepping scheme.

A common drawback of molecular dynamics (MD) simulations is the dif-
ficulty in describing reactive interactions including bond breaking and forma-
tion, which is essential in modeling of chemical reactions [3, 2]. The current
program can perform simulation of complex chemical reactions between the
molecules according to prescribed reaction mechanisms. Full account of in-
ternal degrees of freedom, activation energies and enthalpies of reactions is
implemented.

In addition to these, the program provides the means to specify chemically
active surfaces, thus enabling modeling of electrochemical reactions. These
capabilities are of a special advantage in modeling of fuel cells, including
reactions at micro-pores and at electrolyte interfaces.

3

2 Physical Model

The physical model of ReMoDy is uses the Collision theory1 to describe
elementary chemical reactions, and Kinetic theory2 to describe molecular
gas dynamics. Reactions occur probabilistically during molecular collisions,
with the probabilities determined by the activation energies and reaction
probabilities, if more than one outcome for the reaction exists.

The thermodynamic properties of the gas species include heat capacities3

which are used to distribute thermal energy among molecular degrees of
freedom during collisions.

2.1 Chemical Reactions

In simulations of a gaseous phase and gas-solid interactions, each molecule is
advanced following the classical laws of conservation of its linear and angular
momenta. At the same time a reaction possibility is considered, which de-
termines the transition event for the two species to enter into a reaction with
the production of new species or forming a molecular bond. The reaction
event occurs when the impact energy of the molecules plus their internal en-
ergies exceed the known activation energy for the reaction. Each molecule of
a newly formed specie is treated as a rigid body subjected to Newton’s laws
of motion. Energy distribution among the molecules which result from the
collision are calculated in accordance with the molecular degrees of freedom
determined by molecule’s specific heat constants.

The interaction of the two molecules is modeled through the binary colli-
sion approximation whereby only two molecules can interact at a time. The
interaction between the molecules can be of two kinds: (1) simple mechani-
cal collision, (2) collision with subsequent chemical reaction. The fact of the
collision is detected when the distance between the centers of two molecules
becomes less than the sum of their radii, and their relative velocities are
directed toward each-other.

Collision is modeled in the center-of-mass (CM) frame of reference. The
velocities of the two molecules are first recalculated into the CM frame. The
total energy of the two molecules is first calculated as their combined inter-
nal energy plus their combined kinetic energy in the CM coordinate frame.

1http://en.wikipedia.org/wiki/Collision theory
2http://en.wikipedia.org/wiki/Kinetic theory
3http://en.wikipedia.org/wiki/Heat capacity

4

(a) Bulk Reaction Model

(b) Surface Reaction Model

Figure 1: Reaction Model

5

Chemical reactions are triggered when this energy is in excess of the acti-
vation energy for the reaction. In this case the enthalpy of the reaction is
added to the total energy. This energy (E) is then redistributed between the
degrees of freedom (dof) of the product molecules according to the following
scheme4:

E = KE + IE + enthalpy

KEX =
3

dofk
E

IEX =
dofi

dof
E

dof = dofA + dofB

dofA = DOF (CpA)

dofB = DOF (CpB)

where X represents any of the two interacting molecules X = (A,B),
dofk and dofi are the kinetic and internal degrees of freedom respectively,
dofX are total degrees of freedom (kinetic + internal), and CpX is the specific
heat of molecule X. The function DOF (Cp) for coputing the degrees of
freedom from the specific heat is defined as:

DOF = 3 + (2Cv/R− 3)/2 = 3 + Cv/R− 1.5 = Cv/R + 1.5 = Cp/R + 0.5

where Cv = Cp − R. Since the combined kinetic degrees of freedom are
6, then the combined internal degrees of freedom are calculated as:

dofi = dof − 6

Then for each molecule the ratio of its internal degrees of freedom to the
total internal degrees of freedom is computed as:

rdofiA = (dofA − 3)/dofi

rdofiB = 1− rdofiA

4The notation here is kept close to that used in the code.

6

The calculations of energy redistribution between colliding molecules is
done in the center-of-mass system (CM). The number of kinetic (transla-
tional) degrees of freedom of two colliding molecules in CM system (dofkCM)
will be less than that in the laboratory system, since the CM system already
has 3 translational degrees of freedom associated with its center of mass.
Thus, the total number of kinetic degrees of freedom in CM system will be:

dofkCM = 6− 3 = 3

And the total number of dof in the CM system will be reduced accord-
ingly: dofCM = dof − 3. The number of internal degrees of freedom in CM
system remain the same as in the laboratory system: dofiCM = dofi.

The procedure for calculating new velocities and internal energies in CM
system during the collision of two molecules (’a’ and ’b’) is as follows:

1. The old kinetic energy of the two molecules are computed as:

keold =
ua2

old

2
+
ub2old

2

2. It is combined with the old internal energy to form the new total energy
in CM system as:

eold = keold + iea+ ieb

where iea, ieb are the internal energies of molecules a and b respectively.

3. The new combined energy (e) of the two molecules is calculated by
adding the enthalpy of reaction (h) to the old total energy:

e = eold + h

4. Kinetic energy in the CM system is computed as the share of the new
total energy distributed according to degrees of freedom:

ke =
dofkCM

dofCM

e

ie = energy − ke

7

5. The new velocities of the molecules in the CM frame are then updated
from the old ones. The old velocities were computed according the
elastic collision scheme between two hard-balls. So, if the energy was
released or absorbed during the reaction, and some of it was absorbed
into the internal degrees of freedom, the old velocities should be recal-
culated. The kinetic-energy is redistributed equally between the two
molecules:

maua2

2
=
mbub2

2
=
ke

2

which gives:

ua =
√
ke/ma

ub =
√
ke/mb

This is used to build the ratio of new to old velocities (see interact(...)
function in domain.cc):

uratioA = ua/uaold

uratioB = ub/ubold

which are used to update the velocity vector for each molecule as:

uX(i) = uX(i) ∗ uratioX

where i=(x,y,z) is the Cartesian direction of velocity vector. The re-
maining internal energy, ie, is distribued among the internal degrees of
freedom of each molecule X as:

InternalEnergyX = rdofiX ie

It should be noted, that in the above calculations, the value of kinetic
energy was that computed in CM frame of referecne. This means that he
actual kinetic energy of the molecule will have a somewhat higher value
that what would be expected from an equal distribution of energy among
the internal and exeternal degrees of freedom. Nevertheles, this scheme is
considered accurate, since the resistribution of energy is indeed taking place
in the center-of-mass reference frame, and this will inevitably lead to a higher
contribution of energy to kinetic degrees of freedom.

8

Figure 2: Injection frequency calculations

2.2 Cross-Boundary Species

The code provides the possibility of specifying cross-boundary gases, which
can enter the computational domain from the other side of the open boundary
(the boundary with the type=”open” inside the <boundary> tag of the XML
input file (see Sec.4.2).

The algorithm uses the density and temperature to calculate the fre-
quency of injection of molecules of specie, s at the boundary. The injection
frequency, fs per unit area, A is computed as

fs =
N

∆ t

where ∆ ts is the time interval at which a molecule hits the boundary area
A, and N is the number of molecules in a volume with the base A and length
∆x as shown in the figure:

The time inteval, ∆ t, between the collisions can be related to the com-
ponent of velocity of the molecule of species s, in direction x, vsx, as follows:

∆ t =
2∆x

vsx

The number of molecules, N can be related to density, ρ, as:

N =
ρ

µ
∆xA

9

where µ is the mass of one molecule and A = ∆ y∆ z. Thus, the frequency
is:

fs =
ρ

µ
∆xA

vsx

2∆x
=
ρ vsx

2µ
A

10

3 Implementation

3.1 Collision Detection Scheme

The discretization scheme is based on the combination of the Verlet list
method [5] (Sec.3.1.3) with a space-time collision detection scheme (Sec.3.1.2),
which enable to significantly accelerate the execution of the method. The
standard space-discretization with a variable time-step is also available as an
option.

3.1.1 Standard Time-Stepping Scheme

In a standard scheme all molecules are advanced using a single global time
step. This time step is not constant and is automatically adjusted during
the simulation. It is selected as the minimum time for a molecule to move at
the distance of its radius:

dt =
d

v
where ’d’ is the on the order of molecule radius and ’v’ is the velocity of

a molecule. The minimum is sought for all molecules. After each time step
the relative positions of all molecules are analyzed to determine if there are
any overlaps (collisions) between pairs of molecules.

This choice of time-step, dt, above guarantees that no molecule will miss
a collision event. However, since each molecule usually travels much longer
distances than its length between the collisions, this scheme leads to un-
necessary many steps calculations for an essentially straight trajectory path
between the collisions as illustrated in the figure below.

Also, the time step is selected with respect to the smallest molecule, which
usually also have the highest velocity. Thus, in the case of a gas mixture, this
time-step will be excessively small for bigger and slower moving molecules.

Considering this, and the fact that the molecules travel on straight paths
between the collisions, the standard scheme is very inefficient, since it does
the majority of computations for molecules undergoing no collisions, but
rather traveling on straight paths.

3.1.2 Local Time-Stepping Scheme

The new local time-stepping scheme is based on earlier ideas of event-driven
MD simulations [4, 1], which uses collision detection. However, in the cur-

11

Figure 3: Standard time-stepping involves many unnecessary calculations

rent scheme, instead of moving all molecules with the same time step, each
molecule is advanced directly to the site of its next collision, avoiding any
calculations on the straight path, as shown in the figure.

Now, instead of using a single global time step for all molecules, each
molecule has it’s own time, and its own time-step. Thus, instead of a 3D po-
sition vector and velocity vector, the kinematic parameters for each molecule
include a 4D space-time vector (x,y,z,t), velocity vector, (vx,vy,vz) and the
time step, dt. The time-step for each molecule is calculated as the time to the
next collision. Thus, one can estimate the time of the next collision event,
tcoll, for each molecule by adding its current time to its current time step:

tcoll = t+ dt

The time-steps of molecules are constantly updated within the loop, where
all pairs of molecules are analyzed for possible collisions on the basis of their
velocities and radii. If the molecules are found to be heading for a collision,
then the time of that collision event is compared to the currently estimated
next collision time for each molecule. The time-steps for the molecules are up-
dated if the new collision event is found to occur earlier than both estimated
collision events for each molecule. This results in selection of the earliest
possible collision events. The collision events also include the collisions with
the walls.

In the same loop where the molecular time-steps are updated using collision-
detection scheme, the actual collision events are processed for those molecules

12

Figure 4: Collision detection moves molecule directly to the site of next
collision

which are found to be within the interaction distance from each other. In the
course of collision molecules change their velocities in compliance to momen-
tum and energy conservation, as well as exchange their kinetic and internal
energies according to the equipartition principle, that is, the total energy is
equally distributed among the combined degrees of freedom of two molecules.

After the time-steps of all molecules are updated and collisions processed
in the collision-detection loop, the molecules enter the time-advancement
loop, where each molecule is advanced by its time-step to its nearest collision
event. These two loops are iterated over and over until the termination time
for the simulation.

It should be noted, that the described scheme will not work well, if the
times of all molecules start deviate from each other by too large a value,
causing some molecules to go too far ahead in time compared with other
molecules. Thus, it is necessary to periodically synchronize the molecules,
by bringing them all to the same time level. This is done by introducing the
global time step ∆ t, such that all the molecules exceeding the next global
time level will not move to the next collisions until all the molecules reach
that time level. Then the global time level is incremented by the global
time-step and the procedure is repeated. This is illustrated in Fig.5, where
dt designates an individual time step for a molecule till its nearest collision
site, and ∆ t is the global time step. Each molecule is advanced directly to the
place of the nearest collision with another molecule or to the intersection with

13

Figure 5: Collision detection with the local time-stepping scheme: all
molecules collide at different times, which necessitates the introduction of
individual times and time-steps for each molecule.

the next time-level plane. After crossing the time-level plane the molecule
is not advanced ant further till the global time changes to the next level.
These changes in global time occur when all molecules have advanced to the
current global time-level.

The value of the global time step is selected on the order of molecular
mean-free-path:

dt =
D

v
(1)

where ’D’ is on the order of several mean free-path lengths (or inter-
molecular distances). This choice guarantees that the molecular collision
times will not go out of sync by too much to cause miscalculations in collision
events.

The flow-chart of the main calculation loop is shown in Fig.6. There are
two nested loops: the outer loop iterates over global time, following global
time-steps, while the inner loop goes over individual molecular time-steps.
This nesting of the loops guarantees that the processing of the molecules that
crossed the next global time-level will be postponed till all the molecules have

14

Figure 6: Flowchart of the main loop.

15

crossed that time level. This periodic synchronization of molecules in time
is necessary to achieve effective capturing of all the possible collision events.
All the boxes shown inside the loops indicate actions applied to the collection
of all the molecules as a whole. In particular, after the global time-step is
determined on the basis of (1) all molecules are advanced to their collision
events using their individual time-steps. At the same boundary conditions
are applied to the molecules crossing the domain boundaries. Depending on
the type of the boundary, these can result in molecule being removed from
the domain, bouncing back from the wall, reacting at the boundary with a
resultant chemical transformation, etc.

After that (third block) the individual time-steps of molecules are reset
to the maximum allowed by the current global time-step. Next all molecules
currently in the state of collision are processed, resulting in possible changes
of their velocities, internal energies, or even in chemical transformations to
different molecular types in case when reactions took place. After that the
new collision events are detected for each of the molecule. In the next step
injection of molecules from across the domain boundaries is considered, where
the ’open’ type boundaries are specified. Such boundaries usually represent
the open-end of the domain, which is physically a continuous region of gas.
Example of this situation is when the computational domain is chosen to be
smaller than the actual physical region.

Even though the current scheme is still relying on a global time-step,
this time step is by far larger than that used in the standard time-stepping
scheme discussed above. This is because in the standard scheme the global
time-step is based on molecular size, and in the current scheme it is based
on inter-molecular distance, which is far larger than the size of the molecule:
D >> d. This leads to significant speed-up of calculations compared to the
standard time-advance scheme.

This approach also presents a major improvement over the standard
event-driven schemes [4, 1]. Indeed, the time-step in that case is selected
each time on the basis of the nearest collision event for all the molecules
in the domain. This time will be inversely proportional to the number of
molecules, and at some point will be close to the time step used in a standard
time-stepping scheme described above (see. 3.1.1). This is because with the
large enough number of molecules, there will always be two molecules close
enough to collision with each other at any given time. The new scheme does
not suffer from this inverse dependence of the time step on the number of
molecules. In this case each molecule moves directly to the next collision

16

Figure 7: Grid of Cells for Local Interaction Acceleration

point with its own collision partner, but not to the nearest collision point
among all the molecules.

3.1.3 Verlet Lists

ReMoDy uses interaction acceleration scheme based on linked-cell technique,
which is a variant of the Verlet list method [5]. In this method the whole
computational domain is divided into box-shaped cells. Only interactions
between the molecules from the same or adjacent cells are considered (see
Figure).

The size of the grid cells is selected by optimizing the execution speed,
and is usually on the order of several mean-free-paths. The method en-
ables to achieve near linear dependence of execution time on the number of
molecules (∼ 5/4). In contrast, looping over all molecules makes execution
time proportional to the square of the number of molecules, which makes
that impractical for large number of molecules.

3.1.4 Multi-Processor Implementation

The code can run in parallel on multi-core workstations. It uses the shared-
memory OpenMP library to distribute processing of the molecules time-
advancement and interaction loops among the available CPUs.

17

The two time-critical loops which run in parallel are time-advancement
loop, implemented in subroutine Domain::step(), and interaction loop im-
plemented in Domain::interaction() routine. Before the loops are entered
the molecules are indexes sequentially. Each OpenMP thread selects the
molecules which has index satisfying the criterion:

mod(imol, Nthreads) = ithread

where mod(∗, ∗)df is division by modulus. This way all molecules are dis-
tributed equally between active threads. The number of threads is selected as
the maximum between the available processors, and the pre-defined constant
nthreads.

In addition to this, in the interaction loop, the locking mechanism is
used to prevent simultaneous processing of the same molecules by more than
one processor. This can happen because the interaction procedure considers
all pairs of molecules, which is done in a double-looping over all molecules.
Thus, the selection of molecules from the primary loop, using the mechanism
above will not prevent the possibility of simultaneous processing of the same
molecule from the secondary loop by more than one processor. The locking
mechanism operates by introducing the ’is-locked’ flag for each molecule.
Inside the nested loop the molecule is considered only when its state is not
locked. If this is the case, then the molecule is temporarily locked while its
interaction with the primary molecule from the main loop is being processed.

3.1.5 Dynamic Lists

The main data-structures holding molecules are dynamic lists: Collection
and Container. Collection is a double-linked list of fixed number of items,
with two pointers for each item, pointing to the next and the previous item.
The list consist of two parts: active and dead. Each part forms a loop,
such that following next or previous pointer from any element across the
list will lead back to the same element. The procedure of moving elements
between the active and dead parts is very simple, involving only several
pointer reassignment operations. The figure below illustrates the operation
of removing the active molecule from the computational space and assigning
it to the pool of ”dead” molecules.

The reverse procedure of ”resurrecting” dead molecules and introducing
them into the active pool is done in the same manner. This technique enables

18

Figure 8: Collection Class

to avoid expensive memory allocation/deallocation operations, and save time
on looping over the list of molecules, since all dead molecules are not in the
active list, and are completely ignored by the looping procedure. Thus, no
conditional if-statements are necessary, and shorter list sizes can be used.

The Collection class is convenient for the dynamic storage of a single
collection of items, and is used to store all the molecules in the domain.

Container is a variable size list of pointers to items. Like a Collection it
is also a double-lined list with the next and previous pointers for each item.
But unlike a Collection, the Container all container lists share the same pool
of dead items, or pointers, which can point to any item. Each container list
can acquire items from the pool or return them back to the pool.

The Container list is convenient to store multiple lists of items where the
number of items constantly change. Container lists are used in the imple-
mentation of the linked-cell method described below.

19

Figure 9: Container Class

20

4 Program Usage

4.1 Installation

4.1.1 Step 1: Extracting the archive

If you have the archive file, like remody.tbz (tar-bzipped) or remody.tgz (tar-
gzipped) then files can be retrieved into a current directory as:

tar cvjf remody.tbz

or

tar cvzf remody.tgz

respectively.

4.1.2 Step 2: Compiling

To compile the executable on Linux run make from the remody root directory,
where the makefile was saved. Note that the subdirectories src/, run/, and
obj/ should be also present.

4.1.3 Step 3: Running

The executables are saved in the run/ directory. It should also contain the
example remody.xml and demo.xml files, as well as an initial empty input
file empty.dat.gz. To run the program with an OpenGL window active (slow,
good for debugging), one can use the command:

./view -f demo.xml empty.dat.gz

This will start the program with the initial parameters read from the
demo.xml file and the initial data read from empty.dat.gz file. On startup
the program will open the window. One can point at the window with the
mouse and press ’f’ key to show the frame and ’r’ key to run the simulation.
Alternatively, one can use ’s’ key to run iterations step-by-step. Other key
functions are described by pressing the ’?’ key.

To run the program in a batch mode without OpenGL output, one can
use this command:

21

./job -f demo.xml empty.dat.gz &

This will start the run. To change the parameters of the job, one should
modify the input xml file accordingly (demo.xml, remody.xml, etc.). A link
with the name remody is also set to one of the executables, like

ln -s ./job remody

4.2 Configuration

4.2.1 Input File

Both OpenGL-based and batch-mode executables read the configuration xml
file. By default the file will have the same name as the executable, for exam-
ple: job.xml or view.xml. This can be overwritten with the ’-f’ option. Two
example files remody.xml and demo.xml are provided with the distribution.

The default name of the config file is< progname >.xml, where progname
is the name of the executable, such as view, job, or remody. One can override
the default name by using -f command line option, like:

remody -f syngas.xml

4.2.2 Simulation Parameters

The sections of the input file should be enclosed in XML tag pairs, like
< tag >...< /tag >. where the tags are as follows:

• iterations: specifies the integer number of iterations the code should
run

• time: several parameters of physical execution time in seconds, such as
start=start time, end=end time, and step=time step. The code will
run until either the number of iterations as specified in the iterations
section or the end time is reached.

• molecules: integer number equal to the maximum number of molecules
that the program will be able to handle. It will determine the memory
allocated at the beginning of execution.

• species: this section lists all chemical species and reactions between
them. Correspondingly, each specie is described in specie section as:

22

– specie: includes such parameters as mass in Atomic units [au],
size in nanometers [nm], and specific heat, cp in kJ/(mol*K).
The specie tag should also include an attribute id, identifying a
specie chemical formula, such as CO2, H2O, etc.

– reaction: reaction tag has two attributes: reactants and prod-
ucts. The reactants tag should contain two species identifiers.
Since only elementary (binary) reactions are considered, there
should be exactly two identifiers for reactants. Each of the iden-
tifiers should correspond to one specie identifiers listed in the list
of species. The products attribute should consist of one or two
identifiers of reaction products. Also in the reaction section the
following parameters are specified:

activation Determines the reaction activation temperature in K,

probability Determines the probability of reaction outcome as given by
the

products This parameter should always be 1.0 if there is only one reac-
tion with the given reactants. In case of several reactions with
the same reactants, but with different products, this param-
eter should indicate the probability of this particular branch
with given reaction products.

enthalpy The enthalpy of reaction in kJ/mol.

• domain: The domain section consists of the set of parameters de-
scribing the geometry and physical properties of the modeled media
inside the computational domain, including:

– type: specifies the geometry. Currently only box type is sup-
ported.

– grid: Specifies parameters of the rectangular grid used in seg-
mentation algorithm for accelerating the interaction scheme. In
particular, the cellsize parameter determines the size of the grid
cell. This size should be selected as small as possible but no less
than twice the size of the largest specie. Decreasing the cell size
will speed-up code execution in better than linear proportion of
the cell-size (but no better than quadratic). At the same time it
will increase memory utilization in proportion to it’s 3-rd power.
It is not recommended to increase the memory utilization above
90

23

– energy: Only used for Lennart-Jones type potentials, currently
under development.

– bounds: specifies spatial bounds of the computational domain
as: xmin xmax ymin ymax zmin zmax.

– bulk: this section specifies thermodynamic properties and gas
composition inside the bulk of the domain. In particular, tem-
perature is given in Kelvin [K], and for each specie, its density
is specified in [kg/m3̂].

– boundary: each boundary of the domain contains the description
of thermodynamic properties and gas composition on the other
side of the boundary in the same format as for the bulk of the
domain. In addition to these, the boundary tag should have the
boundary identifier id-attribute, such as ”top”, ”bottom”, ”right”,
”left”, ”front”, and ”rear”. Also additional boundary tag is type,
which can be one of: ”open”, ”elastic”, and ”periodic”. In the case
of open boundary the molecules can freely cross the boundary, in
which case they will be removed from the domain. In case of
elastic boundary the molecules will bounce from the boundary
like from an elastic wall. For periodic boundaries, the molecules
crossing the boundary will reappear from the opposite boundary.
Boundary description can also contain the list reactions, between
the boundary species given in the same format as in the species
section.

• gui: the gui section describes parameters related to graphical output
used when running an OpenGL based version with a visual window
output.

– translation: initial translation of the scene.

– vector: parameters for displaying vectors.

– frame: parameters for displaying a domain frame.

– mesh: parameters for displaying mesh. In particular the node
tag specifies the parameters for displaying particles, or molecules,
such as using points or spheres (type), etc. Note that using
’spehere’ for type may significantly slow-down simulation in GUI
mode.

24

• xterm: if set to 1 this parameter will force terminal dumping of cer-
tain parameters, like temperature, energy, number of molecules, and
species concentrations after every time-step. This can be useful if the
time-dependence of concentrations and other parameters needs to be
retrieved. In the last case the output can be redirected to a file, which
can be processed with the readlog utility

4.3 Output

There are three data output methods that can be used:

1. Compressed snapshots of coordinates, velocities, and internal ener-
gies stored in gzipped ASCII format files. The files are dumped at
time intervals specified in the input XML file under tag: < time ><
output > ... < /output >< /time > with the file names in format:
< task > − < step >.dat.gz, where ¡task¿ is the name of the task,
which is the same as the name of the executable file (job, view, or
any other), and the < step > is the sequence number of the dump,
which is automatically incremented for each subsequent dump. The
output is performed by save() function of Domain class implemented
in domain.cc file. The date in the output file has the format:

NAME X Y Z U V W E T DT

where NAME is the name of the molecule, such as O2, CO2, H2O,
etc., (X,Y,Z) and (U,V,W) are the position and velocity vectors, E is
the internal energy of the molecules, and T and DT are the time and
time-step for the molecule. A histogram of molecular distributions can
be obtained using the hist utility (see Sec.4.5).

2. Terminal output of time sequence of average quantities, such as the
number of molecules (N), average temperature (T), kinetic (K), internal
(I), and total energy (E) per molecule and per degree of freedom. In
addition to that is also outputs the physical time (Time) in nanoseconds
and memory utilization (Memory). The terminal output can be toggled
with < xterm > 0, 1 < /xterm > flag in XML file. The output can be
captured into a file using redirect command, like:

./job > log.log &

25

and post-processed using the Python readlog.py utility. The termi-
nal output is performed inside the Domain::run() function at every
designated time interval.

3. The last method is to dump the graphics window in X-Window dump
format (XWD) and then convert into one of the common graphics for-
mats, such as png or jpg using standard convert utilities, such as Im-
ageMagic’s convert. See also Sec. 4.4.

4.4 Graphics User Interface

ReMoDy can be compiled in two versions: with and without a graphical user
interface (GUI). The former is used to visualize the simulation progress on a
small set of data, while the latter is to perform larger-scale simulations where
the concurrent visualization is not possible.

After the GUI-enabled version with the default name view is started, a
display window pops up, showing the computational domain (Fig.10). The
initial parameters of the scene can be set in the config file (see Sec. 4.2.
The configfile can be reloaded by making the display window active and
hitting the ’l’ key for ’load’. The keyboard control of the simulation has
two modes: keystroke, and commandline. This is similar to vi text editor in
UNIX. Initially the keystroke mode is active.

In the keystroke model the single-key-strokes can be used while the display
window is active. These include:

• ESC: exit. The same as ’q’;

• ?: show help.

• :: switch to a terminal command mode (similar to vi). The same as ’.’;

• a: show/hide the axes.

• b: show/hide boundary faces of the mesh (not used when mesh is
absent).

• c: switch the color-scheme.

• f: show the box frame.

• G: show all the mesh edges.

26

Figure 10: Snapshot of a GUI

• g: show only the boundary mesh edges.

• l: read configuration file.

• m: display the menue on the console.

• N: show mesh nodes.

• n: show boundary vertexes.

• r: start/stop the continuous run.

• s: perform one step of the simulation. Analogous to ’+’.

• v: show boundary vectors.

• w: dump current window into a xwd file.

• Z: zoom-in view.

• z: zoom-out view.

27

The command mode is switched from the keystroke mode by hitting the
’:’ or ’.’ keys. To switch back from the command mode one has to enter an
empty command, that is, press ENTER, while the command line is empty.
In the command mode, the command line appears in the terminal windows
from which the program has started. The commands one can enter in the
command line include:

• bg: go to background run mode. During this mode the all controls are
disabled.

• cs: switch the color scheme.

• fg: go to foreground mode.

• ?, h, or help: show help.

• r: run a number of iterations.

• sp: toggle between spheres and points in particle (molecule) display.

• wd: start/stop window dump every fixed number of iterations.

• dw: dump current window picture into a xwd file.

• e: exit the program. Also saves current data.

• q: quit without saving.

• .: quit the command mode. Also hitting ENTER with empty command
line.

4.5 Utilities

4.5.1 Pre-Processing

The init.cc utility can be used to generate the initial uniform distribution
of molecules. For example, the command:

/init init

will generate file init.dat.gz which can be used as input to remody, like:

/job init.dat.gz

28

To se the parameters one should edit the init.cc file and compile the
program as:

g++ -lz init.cc -o init

4.5.2 Post-Processing

1. Script readlog.py is used to parse the output file generated by the
remody job, when run as:

./job -f remody.xml init.dat.gz > job.log \&

The above command will start the job process, which will dump screen
output into the job.log file. Note that the ’xterm’ tag in the config
file remody.xml should be set to 1 as < xterm > 1 < /xterm > to
generate the log file in the appropriate format. To extract the sequence
of molecular concentrations of, say, hydrogen (H2) for the whole domain
at different times, one should run the following script:

python readlog.py H2 < job.log > H2.dat

File H2.dat will contain time distribution of concentration of H2.

2. Program hist.cc is used to parse the dump file generated by remody
when run as

./job -f remody.xml job-02.dat.gz \&

where job-02.dat.gz is the dump file from the previous run used to
restart the run. Usually the run will generate the output dump files
at regular time intervals as specified in the remody.xml file inside the
<time><output>...</output><time> tag. The output files will have
names as: job-XX.dat.gz where XX is the next consecutive number
of the output dump. To retrieve a histogram of molecular distributions
inside the domain, one can run the hist utility as:

gunzip -c job-XX.dat.gz | grep ^H2 | grep -v ^H2O

| cut -f 3 | hist > H2.dat

29

This will produce file H2.dat with the column of numbers corresponding
to the number of molecules for different slices of the domain. Note,
that the repeated grep functions were used to capture only the lines
beginning with H2 and exclude those beginning with H2O. Other more
efficient line retrieval can be arranged using awk, perl, or python.

To change the domain limits, slice width, the number of slices, and
the direction of slicing one should edit the hist.cc file accordingly and
recompile it as:

g++ -lm hist.cc -o hist

30

5 Conclusions

The moleculear dynamics simulation code ReMoDy was designed to enable
efficient simulation of reacting gaseous mixtures. It is especially suitable for
simulating non-equilibrium and transient processes in micro-pores of a fuel
cell. The important features of the code include:

1. Account of both reactions in the bulk and with active surfaces.

2. Account of molecular internal energies and reaction activation energies
in chemical reactions.

3. New space-time discretization scheme with collision detection.

4. Verlet list method for interaction accelaration.

These features enable to simulate tens of millions of molecules on a single
workstation in a reasonable time.

31

References

[1] A. Donev, S. Torquato, and F.H. Stillinger. Neighbor-list collision-driven
molecular dynamics simulation for non-spherical hard particles. Journal
of Comp. Phys., 202:737–764, 2005.

[2] J.M. Haile. Molecular Dynamics Simulations: Elementary methods. John
Wiley & Sons, New York, NY, 1997.

[3] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge
University Press, New York, NY, 1997.

[4] D.C. Rapport. The event-driven approach to n-body simulation. In Y. Hi-
watari and M. Isobe, editors, Symposium on the 50th Anniversary of the
Alder Transition, 178, pages 5–14, 2009.

[5] L. Verlet. Computer ”experiments” on classical fluids. Phys. Rev., 159:98–
103, 1967.

32

