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Abstract

A 3D drawing methodology based on voxel-graphics was applied to the design of multi-
component engineering systems, such as fuel-cells. Using this methodology and Java-
technology a graphics user interface (GUI) for a fuel-cell simulator program was devel-
oped and used in simulations of large fuel-cell stacks. The GUI is capable to setup, run
and monitor simulations remotely from a web-browser. The geometric design module was
implemented using 3D voxel sculpting methodology and data visualization, which is pro-
totyped after 2D pixel graphics systems. The developed approach was primarily aimed
at the design of complex multi-component engineering systems. However, the flexibility of
voxel-based geometry representation enables one to use this technique for both 3D geomet-
ric design and visualization of unstructured volume data. Examples of both applications are
presented, with the focus on fuel-cell stack simulations.
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1 Introduction

Distributed memory computer platforms, such as Beowulf clusters are in-
creasingly used for complex scientific simulations of physical processes
and engineering systems. Fuel cells offer a way of using the capabilities
of distributed processing for efficient simulation of single fuel cells and fuel
cell stacks. The modularity of fuel-cell stacks can be exploited on computer
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clusters by running the simulation of each fuel cell on a separate processor.
In earlier work the authors reported on the results of simulations of fuel cell
stacks using continuum solvers and distributed simulation techniques [1]. In
this study we present further developments of these techniques and focus
on the issues of efficient simulation control on remote clusters and modeling
of a single fuel cell as a multi-component system.

Until recently it was common to consider two basic geometries for fuel-cells:
tubular and planar. Currently we witness a proliferation of various designs
aimed at increased efficiency and power density. But even in the domain
of simple planar designs there are multitudes of configurations of different
components, such as anode, cathode, electrolyte, air/fuel channels, inter-
connect, separator plates, seals, current collectors, etc. Each component is
typically represented by it's own physical model. Many geometrical designs
are employed, resulting in co-flow, counter-flow and cross-flow configura-
tions [2]. Consequently, there are two issues that arise in the design of
these complex multi-component, multi-physics systems: geometric design
and physical modeling. This article gives a brief outline of the basic prin-
ciples of general physical modeling used in our fuel-cell simulations, but is
primarily concerned with geometric design of a single fuel cell. In partic-
ular, for typical fuel cells configurations we found that the design can be
simplified by adopting a relatively straightforward method of voxel sculpting
[3-5].

Another aspect of simulating fuel cell stacks concerns simulation control on
a remote cluster. The simulation solver has to be specifically implemented
for execution on a distributed memory system, using domain decomposi-
tion techniques and message-passing interfaces (MPIl, PVM). After such
solver has been implemented, to perform a simulation one has to go through
the stages of setup, execution, data processing and visualization. All the
stages face challenges associated with the distributed nature of computa-
tions, especially when geometrically complex 3D systems are involved. The
task becomes extra difficult when the cluster has to be accessed through
the Internet from a remote workstation. In this case the user of the clus-
ter would greatly benefit from an accessibility to a graphical user interface
(GUI), which could provide for remote control of the simulation. In this study
we developed such a GUI, and used it in simulations of fuel-cell stacks on
Beowulf clusters. The GUI performed functions of (1) simulation setup, in-
cluding complex 3D geometric design, (2) monitoring and runtime control of
the simulation, and (3) distributed data sampling and visualization.
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Fig. 1. Simulation setup with a remote GUI control based on a client-server model.

2 Method

2.1 Client - Server Model

In order to effectively monitor and control the execution of a parallel appli-
cation running on a remote cluster we implement a client-server scheme
(Fig.1). In this approach there is a single client running on a local work-
station and server process running on a remote cluster. The client process
enables the user to setup and remotely control the simulation, as well as
retrieve and visualize data samples.

The server process controls the execution of a parallel solver running on the
cluster. The server process is initiated as a part of the remote parallel appli-
cation, and its purpose is to respond to client’s requests. The are different
channels by which the control information can be passed between the client
and the server. In the simplest version the information can be exchanged
through configuration files. Files containing user requests are created by the
client and periodically read by the server, and server control information is
written into files read by the client. In a more dynamic scheme the communi-
cations can be accomplished via MPI interface. The server is implemented
as part of the solver, which is executed on each node the multi-processor
simulation.



2.2 Modeling Framework

The server running on the cluster is implemented as a set of functions that
can be linked with a variety of continuum or discrete solvers, thus enabling
one to control the simulation performed by the solver from a remote client.
Client and server exchange information on parameters, variables and do-
mains, which represent generic data types used by most continuum and
discrete dynamics solvers.

Each parameter stores a single value attributed to the given model or to the
simulation as a whole. Examples of parameters are total current through
the system, ambient temperature, number of processors, data sampling in-
terval, etc.

Variables are represented by a set of multi-dimensional values (scalars,
vectors, etc.) with each element of the set attributed to one element of
the domain. For example, distributions of temperature, current, chemical
species, etc.

Domain is a connected region of space assigned to a specific physical
model. For the purpose of numerical integration each domain is discretized
by decomposing it into smaller and geometrically simple regions (elements),
where physical laws are considered to be homogeneous and isotropic. The
group of connected elements represents a grid, which can be of a struc-
tured type (global connectivity information) or unstructured type (local con-
nectivity), which is also called mesh. Thus, a domain consists of a mesh, a
set of variables and the solution procedure. The introduction of the domain
data class provides the basis for muti-physics simulations, where different
physical models can be assigned to the different regions of space.

2.3 User Interface

The purpose of the local client process is to initiate the following actions
through the user interface:

(1) Problem setup on a local workstation.

(2) Transfer of the data and source-code files to the remote cluster.

(3) Building of the application executables and input files on the cluster.
(4) Submitting the remote application for execution.

(5) Monitoring of the remote run.

(6) Sampling of data from cluster nodes.

(7) Terminating the run.
(8) Collecting the data.



(9) Visualizing

The most difficult among these tasks are related to geometric design, data
retrieval and visualization. In particular, the following aspects of this work
received the most of the development effort: (1) designing 3D drawing tools
- 3D sculpting, (2) implementing 3D surface and volume rendering, (3) com-
pression of voxel data, and (4) creating grid-independent representation of
geometry.

2.3.1 Geometric design

An important issue in geometric design is defining complex 3D shapes. In
most engineering CAD applications 3D drawing is realized by using combi-
nations of pre-defined shapes: spheres, cones, surfaces of evolution, com-
bined with planar drawing and extrusion operations. These 3D modeling
techniques still lack the flexibility of general pixel graphics used in conven-
tional 2D drawing programs (PaintBrush, XPaint, etc.). Pixel graphics offer
the possibility to easily create and alter complex geometrical shapes. The
extension of a pixel to 3D is also known a voxel (VOlume piXEL) [6]. Using
voxel graphics creates additional advantages over surface representations
(vector graphics), since they avoid completely topological complexities of
surface transformations. This is because surfaces do not exist as objects in
voxel representation. Another advantage of voxel graphics is their versatility
and power combined with a great algorithmic simplicity.

The price to pay for this flexibility is seemingly inefficient usage of space,
which has to be uniformly filled by the voxels. However, the very unifor-
mity of voxel distribution opens the possibility to use efficient compres-
sion algorithms, so that the overall storage requirement for a surface or a
compressed voxel representation becomes about the same. Unfortunately,
efficient compression schemes can only be applied to voxel graphics for
storage and communication purposes. Real time graphics manipulation by
the drawing algorithm would require at least partially uncompressed image.
This is the reason why voxel graphics were not seriously approached until
recently. Today the situation may be changing. A complex multi-color scene
described by a 10003-pixel cube, can already easily fit into a workstation
with a 1GB of RAM ! . This opens an opportunity to revisit simple and robust
pixel graphics techniques for engineering design and scientific applications
that involve dynamic 3D geometries and complex scene transformations. In
applications to fuel cells design the approach offers a simple technique for
geometric design of these multi-component systems. We found it particu-
larly useful in simulations of fuel cell stacks on distributed memory computer

1 'We consider a 256 color scheme where one pixel can be represented by one byte in a
computer memory



platforms, where remote setup and control of the simulation can speed up
the analysis.

In this work we pursued the approach to geometric design based on 3D
sculpting and voxel-graphics [5,4,3]. The task of extending 2D pixel graphics
to 3D can be accomplished on two levels of generality: (1) extending the
drawing plane to 3D, and (2) introducing 3D paint-tool controls.

A simple extension of planar drawing plane to 3D is relatively straightfor-
ward. It requires the introduction of the third dimension into the pixel-array
and identifying the position and orientation of the drawing plane. In a sim-
plified case the drawing plane can have three different orientations with
respect to Cartesian coordinates. The image drawn in the plane can then
be extruded into the third dimension, analogously to the operation done in
conventional CAD applications. (Fig.2). This approach is adequate for the
purposes of designing many engineering systems, such as planar fuel-cells.
A more general approach to voxel-sculpting [5,4] is being currently pursued
with the introduction of 3D sculpting tools.

Introducing 3D drawing tool controls can be as simple as changing the po-
sition and orientation of the drawing plane. However, to alleviate the frustra-
tion of dealing with hundreds of drawing planes in case of high-resolution
3D scenes, more advanced 3D drawing tools and motion controls should be
introduced. In essence, each 2D drawing tool can have it's 3D counterpart,
with extra spatial dimension added to the tool. For example, the drawing
pen can be represented by a color-filled ball of a certain radius. The user
selects the color and the radius of the ball. Positioning of the ball in space
can be done by selecting the direction vector of ball’'s motion and then ad-
vancing it along this direction. Since there are three parameters required
for this operation, it can be done, using only mouse controls: two mouse-
position coordinates to set the direction vector, and mouse-wheel motion to
set the position along that direction. More sophisticated 3D navigation tools
can be developed using prototype controls of a flight-simulator application.

2.3.2 Visualization

Effective 3D visualization of the drawn scene is the key supplement to suc-
cessful drawing capabilities. An almost trivial feature in 2D graphics, visu-
alization and surface rendering become a major effort in 3D. For most pur-
poses of engineering design a simple wireframe rendering mode is usually
enough. This can be accomplished in a number of ways, and in a manner
consistent with the resolution of the image, i.e, the ratio of the image size
to the grid-cell size. Three wireframe rendering models were implemented.
One of them is based on a relatively versatile and fast method of construct-



ing cutting-plane contours. The number of planes, their orientations and
separations can be set by the user, thus, adjusting the rendering to high
vs. low resolution scenes. Another wireframe model is based on a direct
rendering of surface edges of every boundary voxel as a set of segments.
This representation is most memory consuming and preserves all the in-
formation contained in the voxel format. It can be used for low-resolution
scenes with a small number of voxels. The third wireframe representation is
grid-independent type, where the surface is stored as a triangulated mesh,
with mesh properties independent of the three axes directions of the original
voxel-grid. The method of constructing such surface is based on boundary
surface reconstruction algorithm, which filters out the main wavenumber
associated with the underlying discrete grid, and which was specifically de-
veloped in the course of this study.

The advantages of wireframe rendering are that it is relatively simple to han-
dle algorithmically and sufficiently fast to work well even without accelerated
graphics. It also provides one with the depth perspective. Nevertheless, for
an accomplished drawing and design package a more advanced surface
and texture rendering is needed. For this purpose Java3D graphics library
was used, which works best with hardware accelerated graphics. In this
combination both wireframe and surface rendering modes are possible.

2.3.3 Data compression

Even though scenes of relatively high resolution can be created on a mod-
ern workstation, when used remotely, pixel graphics can still present a prob-
lem because of the necessity to transfer bulky voxel representations over
relatively slow networks. Fortunately, most of the scenes of practical inter-
est can be effectively compressed to many times less than the size of raw
voxel representation. This is due to the fact that the amount of information
contained in a scene is independent of whether pixel or vector graphics rep-
resentation is used to describe it. This information is rather related to the
positions and shapes of the few objects populating the scene. From this per-
spective, the efficient compression algorithms applied to a voxel-graphics
representation will eliminate the inherent redundancy of voxel format and
convert it into a high-entropy format which will be comparable in size to any
other compact format with the degree of compression close to theoretical
maximum.

2.3.4 Simulation control

After the physical model has been setup the client can initiate the transfer
of necessary files to the cluster and schedule the simulation for execution.



Once started, the simulation can be monitored by periodic data sampling
from the cluster nodes and displaying them in numerical or graphical format.
The data sampling strategy is set from the considerations of bandwidth and
problem size. One dimensional (vector) data can be displayed as 2D plots.

Simulation parameters represent the input data of the problem, which are
not affected by the simulation, such as initial/lboundary conditions, number
of processors, the duration of the run etc. Almost all the simulation param-
eters can be changed dynamically during program execution. This enables
one to change simulation conditions in real-time.

Table 1 displays the list of some parameters used to control the sampling
sizes and frequencies as well as several physical parameters of a fuel-cell
model. Some fields in the parameter table can be set by the user, and others
are fixed. Each parameter is identified by several properties. Scope deter-
mines if the parameter represents a variable, defined on the nodes of com-
putational mesh, such as temperature or concentration, or a single value
valid for all the simulation, such as total current or the ambient tempera-
ture. Parameters which belong to parameter-scope are not modified by the
solver, and can be changed by the user during the simulation. Parameters
of the variable-scope are subdivided into control variables and variables.
Variables are modified by the solver during the run, and thus can only be
set as initial parameters of the simulation, whereas the control variables
can be set by the user during the run. The type of the parameter identifies
it's numerical representation as an integer or a real number. The parame-
ter dimension identifies it as a scalar (0), a vector (1), or a general n-rank
tensor (n). The value and monitor fields are set by the user, where the latter
indicates if the parameter’s values will be monitored during the run.

It should be noted that the flexibility of setting up the control parameters
enables one not only to start/stop the execution but also to change model
parameters during the simulation, i.e. ambient temperature, total current,
etc.

In addition to providing visualization capabilities, remote data monitoring,
and control of the simulation, the interface essentially hides from the user
the intricacies of the underlying operating system running on the cluster.
Some of the interface menu functions can in fact be developer-defined.
Thus, it is possible for the code developer to assign different Unix-type com-
mands for the user to execute on the cluster without requiring proficiency
with Unix. These commands can be changed or implemented without the
need to recompile the interface executable itself.



Name Scope Type | Dim | Value | Monitor

NP parameter | int 0 10 false
MonitorPlane parameter | int 0 10 false
TotCurrent parameter | real 0 600.0 false
TemperatureAmb | parameter | real 0 1250.0 false
StopTime parameter | real 0 | 9000.0 false
PrintCntStep parameter | int 0 1e9 false
PrintTimeStep | parameter | real 0 100.0 false
CathodelnletVel | parameter | real 0 1.214 false
AnodelnletVel | parameter | real 0 0.407 false
CathodelnletT parameter | real 0 1073.0 false
AnodelnletT parameter | real 0 1073.0 | false
TimeStep controlvar | real 0 0.0 false
TemperaturePEN | variable real 0 1200.0 true
TemperatureAir variable real 0 1200.0 true
TemperatureFuel | variable | real 0 1200.0 true
TemperatureSep variable real 0 1200.0 true
TemperatureTop variable real 0 1200.0 true
CurrentDensity variable | real 0 0.0 true

Table 1
Simulation control parameters for a fuel-cell application

3 Simulation of fuel cell stacks

The methodology of integrated simulation setup and control based on voxel-
graphics and Java-technology was applied to simulations of fuel cell stacks
on Beowulf clusters. In this case the geometric design of a fuel cell is done
on a local workstation by means of voxel-based graphics tools implemented
in Java. The geometric information and the setup parameters are then trans-
ferred to the cluster. After the simulation is started it can be monitored from
on the workstation by periodically retrieving data samples and displaying
them in graphics format.

Figure 2 shows the example of voxel-based sculpting of arbitrary 3D shapes.
Application of this voxel-based sculpting to a cross-flow fuel-cell geometry
is shown in Fig.3. The geometry can be displayed either in wireframe rep-
resentation or using surface rendering.
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Fig. 2. Voxel sculpting of 3D shapes.
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(a) Wireframe representation (b) Surface representation

Fig. 3. Geometric design of fuel cells: surface representations.

A screen-shot of the GUI is shown in Fig.4 where the main components,
such as the main panel, the control panel, the 3D view panel, the 2D draw-
ing pane, and the 3D wireframe view are displayed. Figure 5 shows the
screenshot of the monitoring window where the transient temperature re-
trieved from the remote cluster nodes are displayed in a graphical format.
Considering small time-steps that are required for electrical and chemi-
cal sub-models of the solver, such simulation may take large computer
resources in terms of time and memory. Thus it is important to realize a
flexible system of simulation control which enables one to adjust parame-
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ters during the run. Thus, in Fig.5 thermal responses to changes in total
current are observed. It should also be noted that large fuel cell stacks may
exhibit unexpected temperature and voltage variations, depending on the
performance of separate cells. The developed system can be effectively
used to simulate various stack operation scenarios, where the failure of one
of several cells may affect the overall stack performance.

This system of remote setup and monitoring was successfully applied to
the simulation of large stacks of up to 40 solid oxide fuel cells [1,7,8]. Fig-
ure 6 shows sample distributions of temperature and voltage within a 20-cell
stack. This simulation was done under uniform stack conditions with respect
to fuel and oxidizer supply. However, non-uniform variations of temperature
and voltage can clearly be observed for the bottom and top group of cells in
the stack.

4 Conclusions

An approach to 3D graphics based on voxel-representation was success-
fully applied to the setup of typical fuel-cell geometries. The approach offers
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Fig. 5. Remote monitoring of transient temperatures.

considerable simplicity and flexibility. It also enables one to combine geo-
metric design and data visualization in a single framework.

Making use of Java-technology and a client-server model enables one to
design web-based user interfaces for remote control and monitoring of sci-
entific and engineering simulations on Beowulf clusters.

Because of inherent modularity of fuel-cell stacks these systems can be
effectively simulated on distributed memory platforms, such as workstation
clusters. These simulations can benefit from remote interfaces with graphi-
cal capabilities, such as the one developed in this study. An extra advantage
provided by the interface is the flexible control of the simulation, thus pro-
viding the possibility of playing out different operation scenarios.

Based on the results of this study we conclude that voxel-graphics is a
promising technique for applications in grid and cluster computing, related
to 3D geometric design and data visualization.

Acknowledgment This work was jointly sponsored by the U.S. Depart-
ment of Energy, National Energy Technology Laboratory and West Virginia
University.

12



80
g L :
70 5 4
* A
* i./_\
60 : -
[ ] <if_\.
50 . -
) * A
@ W,
> 40 . .
k1 : .y
30 - .
s a, | © Interconnect
20 . ‘i:A » Fuel Channel||
10 - 3| : PEN I
. e - + Air Channel
0 = T A| T ]
1200 1220 1240 1260 1280 1300
Temperature [K]
(a) Temperature
1.000 q
& 0.995
&
©
® 0.990 -
N
©
200.9857 I II IIIIIIIIIIIII
0.980
19 16 13 10 7 4 1
Cell Number

(b) Voltage

Fig. 6. Distributions of physical parameters within the stack.

References

[1] A. Burt, I. Celik, R. Gemmen, A. Smirnov, A numerical study of cell to cell
variations in a SOFC stack, Journal of Power Sources 126 (2004) 76—87.

13



[2] E. Services, |. Parsons, S. A. I. Corporation, Fuel cell handbook. Fifth edition,
Tech. Rep. DOE/NETL-2000/1110, U.S. Department of Energy, Office of Fossil
Energy, Federal Energy Technology Center (2000).

[8]H. Chen, H. Sun, Real-time haptic sculpting in virtual volume space, in:
Proceedings of the ACM symposium on Virtual reality software and technology,
ACM Press, 2002, pp. 81-88.

[4] S. W. Wang, A. E. Kaufman, Volume sculpting, in: Proceedings of the 1995
symposium on Interactive 3D graphics, ACM Press, 1995, pp. 151-158.

[5] T. A. Galyean, J. F. Hughes, Sculpting: an interactive volumetric modeling
technique, in: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, ACM Press, 1991, pp. 267-274.

[6] A. Kaufman, D. Cohen, R. Yagel, Volume graphics, Computer 26 (7) (1993) 51—
64.

[7] A. Burt, I. Celik, R. Gemmen, A. Smirnov, Cell to cell performance variations
within a stack, in: Eighth International Symposium on Solid Oxide Fuel Cells
(SOFC VIll), Paris, France, 2003, pp. 217—-223.

[8] A. Burt, I. Celik, R. Gemmen, A. Smirnov, Influence of radiative heat transfer on
variation of cell voltage within a stack, in: First International Conference on Fuel
Cell Science, Engineering, and Technology, Rochester, NY, 2003, pp. 1487—-
1500.

14



