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Abstract

A heuristic mesh generation technique is proposed, which is based
on the model of forced particle motion, edgewise cell-splitting algo-
rithm, and a moving tool concept.

1 Background

There are three factors in mesh generation that are important from the
user perspective: quality, speed and convenience. Usually mesh gener-
ation software tries to reach a compromise between the tree. When it
comes to unstructured tetrahedral meshes, there is a wealth of methods
to achieve a high mesh quality based on Delaunay tessellations [1, 5, 4].
Most of these use local mesh readjustments, by introducing extra vertexes
and reassigning cell-node connectivities to preserve small aspect ratios in
the mesh [2, 4]. This reassignment is a computationally intensive proce-
dure, and the introduction of extra vertexes can lead to undesirable mesh
non-uniformities. The criteria for mesh readjustment are usually given
by circumradius-to-smallest-edge-length ratios and are designed to avoid
small angles in the tetrahedra. However, these criteria are often not suf-
ficient to completely avoid poorly shaped tetrahedra with extremely small
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volumes [3]. Therefore, additional techniques are often used to improve
the quality of the mesh, which leads to further slowdown of the mesh gen-
eration.

User convenience is determined by the complexity of operations re-
quired to define the 3D geometry, which is usually built from simpler planar
elements. The complexity here arises from the need to specify the con-
nectivities between these elements. Another problem is conforming the
user defined 2D surface- and the generated 3D volume-meshes, which is
not always easily solved.

In this study a heuristic approach to generate 3D tetrahedral meshes
is proposed, based on the idea of a tool, an edge-wise cell-splitting, and a
simple particle dynamics model.

2 Method

If a traditional unstructured mesh generation procedure can be compared
to a crystal growth, where each new vertex is introduced on the top of
the already assembled structure, thereby expanding the mesh-front, the
current approach is based on on a tissue growth model. In this model each
vertex of already existing mesh is experiencing pressure forces from inside
the mesh. These forces can be repulsive forces from the inside vertexes,
or the pressure forces of a hypothetical gas, filling-in the interior of the
mesh. In either case the surface vertexes of the mesh will tend to move
outwards, stretching the edges connecting them to the inside neighbors,
whose positions are kept fixed (in another scenario the immediate inside
neighbor vertexes are allowed to move as well). As the length of an edge
reaches a certain threshold it is split in half and a new vertex is introduced
in it’s center (Fig.1). Following this, all cells containing that edge are split
in half, with the new vertex becoming the common vertex for the newly
formed cells around that edge. This edgewise splitting can occur for both
internal and boundary edges, leading to a foam-like growth of the cells.

If the progress is allowed to proceed unconstrained it would lead to
rather unpredictable shapes of the resulting mesh. To keep the situa-
tion under control a special tool-object is introduced, which is a single-
connected convex domain, which in simplest case can have a spherical or
a polyhedral shape. The tool encloses the growing part of the mesh. Only
vertexes located inside the tool are allowed to move. Boundary vertexes
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Figure 1: Cell-growth by edge splitting.
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Figure 2: Dividing cells are filling-in the interior of a sphere.

of the mesh inside the tool experience attractive force directed toward the
surface of the tool (alternatively it could be a repulsive force acting from
some point inside the tool). In this way the local mesh boundary takes the
shape of the tool, as more boundary cells are generated while the edges
stretch and new vertexes are introduced into the mesh (Fig. 2).

In order to prevent the formation of badly shaped tetrahedra the pro-
cess is accompanied by a periodic elliptic smoothing procedure, when
each vortex is placed at the center-of-mass of the enclosing polyhedron.
This procedure is similar to that used in FEM assembly operation and in-
volves looping over the cells to calculate cell-volumes and assemble them
into nodal-volumes. Another loop through the vertexes is then required to
move them to the new positions. The smoother is applied only to the ver-
texes within a certain relaxation radius from the tool. The relaxation region
can be slightly bigger than the radius of the tool, so that sufficiently many
mesh-nodes are relaxed to new positions. A similar elliptic smoother is
applied to the vertexes that reach the surface of the tool. Here a special
care should be taken that the vertexes actually remain on the tool-surface
while they are relaxed. After the relaxation is done the tool is moved to a
new position.

If the motion of the tool is incremental, so that each new position is
inside the previous area enclosed by the tool, the new vertex and cell lists
belonging to the tool can be compiled locally without searching through all
the mesh. It can be done with a recursive procedure, which would require
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a cell-cell connectivity information, i.e. a list of cell-neighbors for each cell.
This information is automatically recorded during cell splitting. In this way
the algorithm is made strictly local, in that the speed of execution does not
depend on the size of already assembled mesh, and all the operations are
confined to the area inside the tool.

The length of the edge-splitting threshold is selected as a fraction of
a tool-size. This enables an easy control of the mesh refinement level
and sets the limit on the minimum and maximum cell sizes in the mesh.
Together with the elliptic smoother, this produces a rather uniform mesh.

Because the mesh in this process grows from inside-out it rarely expe-
riences a conformation problem of joining with other parts of the mesh in-
side the domain or at the boundaries, which is often the case with surface-
inward mesh generation techniques. Nevertheless, mechanisms of using
a sewing-tool to patch different parts of the mesh can be implemented.
Another useful option is to use a destructive tool, which will remove cells
from already existing mesh.

A further advantage of this method is that it does not require specifica-
tion of two dimensional surfaces in order to produce the mesh. Instead it
requires procedures for tool selection, orientation and motion. Tool motion,
being one-dimensional, can be easily programmed in a separate tool-script
file. This file contains a one dimensional skeleton of the geometry and the
scenario of tool shapes, motions and transformations along the skeleton.
This information is substantially simpler to encode than the 2D surface ge-
ometry of the domain. Another possibility is to integrate the tool control
into a user interface and use it for manual tool manipulation. In this case
the mesh generation will be accomplished in a way similar to conventional
2D drawing packages. This will provide a more intuitive and simpler user
interface than the one based on surface generation and patching.

The example in figure 3 shows the surface edges of a tetrahedral mesh,
representing bifurcating blood vessels or airways. The mesh was gener-
ated using a spherical tool moving along prescribed paths with tool-radius
changing along the way.

3 Conclusions

The proposed tool-assisted mesh generation technique simplifies mesh
generation and has a potential for creating more intuitive user interfaces.

5



Figure 3: Meshing a bifurcating duct with a spherical tool.
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